Journal Home > Volume 8 , Issue 3

A lithium-assisted approach has been developed for the exfoliation of pristine graphite, which allows the large-scale preparation of few-layer graphene nanosheets. The process involves an unexpected physical insertion and exfoliation, and the graphene nanosheets prepared by this method reveal undisturbed sp2-hybridized structures. A possible two-step mechanism, which involves the negative charge being trapped around the edges of the graphite layers and a subsequent lithiation process, is proposed to explain the insertion of lithium inside the graphite interlayers. If necessary, the present exfoliation can be repeated and thinner (single or 2–3 layer) graphene can be achieved on a large scale. This simple process provides an efficient process for the exfoliation of pristine graphite, which might promote the future applications of graphene.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Lithium-assisted exfoliation of pristine graphite for few-layer graphene nanosheets

Show Author's information Minwei Xu1,2Huiting Sun1Cai Shen3Sen Yang1Wenxiu Que2Yin Zhang4( )Xiaoping Song1( )
MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed MatterXi'an Jiaotong UniversityXi'an710049China
Electronic Materials Research LaboratoryInternational Center for Dielectric ResearchXi'an Jiaotong UniversityXi'an710049China
Ningbo Institute of Materials Technology and EngineeringChinese Academy of ScienceNingbo315201China
School of Materials Science and EngineeringTongji UniversityShanghai201804China

Abstract

A lithium-assisted approach has been developed for the exfoliation of pristine graphite, which allows the large-scale preparation of few-layer graphene nanosheets. The process involves an unexpected physical insertion and exfoliation, and the graphene nanosheets prepared by this method reveal undisturbed sp2-hybridized structures. A possible two-step mechanism, which involves the negative charge being trapped around the edges of the graphite layers and a subsequent lithiation process, is proposed to explain the insertion of lithium inside the graphite interlayers. If necessary, the present exfoliation can be repeated and thinner (single or 2–3 layer) graphene can be achieved on a large scale. This simple process provides an efficient process for the exfoliation of pristine graphite, which might promote the future applications of graphene.

Keywords: graphene, exfoliation, few-layer, lithium Intercalation

References(43)

1

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

2

Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.

3

Novoselov, K. S.; Fal'ko, V. I.; Colombo, L.; Gellert, P. R.; Schwab, M. G.; Kim, K. A roadmap for graphene. Nature 2012, 490, 192–200.

4

Singh, V.; Joung, D.; Zhai, L.; Das, S.; Khondaker, S. I.; Seal, S. Graphene based materials: Past, present and future. Prog. Mater. Sci. 2011, 56, 1178–1271.

5

Avouris, P.; Dimitrakopoulos, C. Graphene: Synthesis and applications. Mater. Today 2012, 15, 86–97.

6

Wu, J. S.; Pisula, W.; Müllen, K. Graphene as potential material for electronics. Chem. Rev. 2007, 107, 718–747.

7

Weiss, N. O.; Zhou, H. L.; Liao, L.; Liu, Y.; Jiang, S.; Huang, Y.; Duan, X. F. Graphene: An emerging electronic material. Adv. Mater. 2012, 43, 5782–5825.

8

Bonaccorso, F.; Sun, Z.; Hasan, T.; Ferrari, A. C. Graphene photonics and optoelectronics. Nat. Photon. 2010, 4, 611– 622.

9

Wang, X.; Zhi, L. J.; Müllen, K. Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett. 2008, 8, 323–327.

10

Zhu, Y. W.; Murali, S.; Cai, W. W.; Li, X. S.; Suk, J. W.; Potts, J. R.; Ruoff, R. S. Graphene and graphene oxide: Synthesis, properties, and applications. Adv. Mater. 2010, 22, 3906–3924.

11

Sun, Y. Q.; Wu, Q.; Shi, G. Q. Graphene based new energy materials. Energy Environ. Sci. 2011, 4, 1113–1132.

12

Sahoo, N. G.; Pan, Y. Z.; Li, L.; Chan, S. H. Graphene- based materials for energy conversion. Adv. Mater. 2012, 24, 4203–4210.

13

Xu, C. H.; Xu, B. H.; Gu, Y.; Xiong, Z. G.; Sun, J.; Zhao, X. S. Graphene-based electrodes for electrochemical energy storage. Energy Environ. Sci. 2013, 6, 1388–1414.

14

Huang, X.; Qi, X. Y.; Boey, F.; Zhang, H. Graphene-based composites. Chem. Soc. Rev. 2012, 41, 666–686.

15

Yang, W. R.; Ratinac, K. R.; Ringer, S. P.; Thordarson, P.; Gooding, J. J.; Braet, F. Carbon nanomaterials in Biosensors: Should you use nanotubes or graphene? Angew. Chem. Int. Ed. 2010, 49, 2114–2138.

16

Hummers, W. S.; Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339–1339.

17

Tung, V. C.; Allen, M. J.; Yang, Y.; Kaner, R. B. High- throughput solution processing of large-scale graphene. Nat. Nanotechnol. 2009, 4, 25–29.

18

Lotya, M.; Hernandez, Y.; King, P. J.; Smith, R. J.; Nicolosi, V.; Karlsson, L. S.; Blighe, F. M.; De, S.; Wang, Z. M.; McGovern, I. T. et al. Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. J. Am. Chem. Soc. 2009, 131, 3611–3620.

19

Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F. M.; Sun, Z. Y.; De, S.; McGovern, I. T.; Holland, B.; Byrne, M.; Gun'Ko, Y. K. et al. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 2008, 3, 563–568.

20

Li, X. S.; Cai, W. W.; An, J.; Kim, S.; Nah, J.; Yang, D. X.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E. et al. Large- area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312–1314.

21

Virojanadara, C.; Syväjarvi, M.; Yakimova, R.; Johansson, L. I.; Zakharov, A. A.; Balasubramanian, T. Homogeneous large-area graphene layer growth in 6H-SiC(0001). Phys. Rev. B 2008, 78, 245403.

22

Su, C. Y.; Lu, A. Y.; Xu, Y. P.; Chen, F. R.; Khlobystov, A. N.; Li, L. J. High-quality thin graphene films from fast electrochemical exfoliation. ACS Nano 2011, 5, 2332–2339.

23

Wang, J. Z.; Manga, K. K.; Bao, Q. L.; Loh, K. P. High-yield synthesis of few-layer graphene flakes through electrochemical expansion of graphite in propylene carbonate electrolyte. J. Am. Chem. Soc. 2011, 133, 8888–8891.

24

Choucair, M.; Thordarson, P.; Stride, J. A. Gram-scale production of graphene based on solvothermal synthesis and sonication. Nat. Nanotechnol. 2009, 4, 30–33.

25

Zeng, Z. Y.; Yin, Z. Y.; Huang, X.; Li, H.; He, Q. Y.; Lu, G.; Boey, F.; Zhang, H. Single-layer semiconducting nanosheets: High-yield preparation and device fabrication. Angew. Chem. Int. Ed. 2011, 50, 11093–11097.

26

Vasil'ev, Y.; Wallis, D.; Nüchter, M.; Ondruschka, B.; Lobach, A.; Drewello, T. From major to minor and back— a decisive assessment of C60H36 with respect to the Birch reduction of C60. Chem. Commun. 2000, 1233–1234.

27

Birch, A. J. Reduction by dissolving metals. Part I. J. Chem. Soc. 1944, 430–436.

28

Subrahmanyam, K. S.; Kumar, P.; Maitra, U.; Govindaraj, A.; Hembram, K. P. S. S.; Waghmare, U. V.; Rao, C. N. R. Chemical storage of hydrogen in few-layer graphene. Proc. Natl. Acad. Sci. USA 2011, 108, 2674–2677.

29

Liang, F.; Sadana, A. K.; Peera, A.; Chattopadhyay, J.; Gu, Z. N.; Hauge, R. H.; Billups, W. E. A convenient route to functionalized carbon nanotubes. Nano Lett. 2004, 4, 1257– 1260.

30

Yang, Z. Q.; Sun, Y. Q.; Alemany, L. B.; Narayanan, T. N.; Billups, W. E. Birch reduction of graphite edge and interior functionalization by hydrogen. J. Am. Chem. Soc. 2012, 134, 18689–18694.

31

Deng, S. L.; Zhang, Y.; Brozena, A. H.; Mayes, M. L.; Banerjee, P.; Chiou, W. A.; Rubloff, G. W.; Schatz, G. C.; Wang, Y. H. Confined propagation of covalent chemical reactions on single-walled carbon nanotubes. Nat. Commun. 2011, 2, 382.

32

Dresselhaus, M. S.; Jorio, A.; Hofmann, M.; Dresselhaus, G.; Saito, R. Perspectives on carbon nanotubes and graphene Raman spectroscopy. Nano Lett. 2010, 10, 751–758.

33

Sun, C. F.; Karki, K.; Jia, Z.; Liao, H. W.; Zhang, Y.; Li, T.; Qi, Y.; Cumings, J.; Rubloff, G. W.; Wang, Y. H. A beaded- string silicon anode. ACS Nano 2013, 7, 2717–2724.

34

Liu, W. W.; Wang, J. N. Direct exfoliation of graphene in organic solvents with addition of NaOH. Chem. Commun. 2011, 47, 6888–6890.

35

Ferrari, A. C.; Basko, D. M. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 2013, 8, 235–246.

36

Casiraghi, C.; Hartschuh, A.; Qian, H.; Piscanec, S.; Georgi, C.; Fasoli, A.; Novoselov, K. S.; Basko, D. M.; Ferrari, A. C. Raman spectroscopy of graphene edges. Nano Lett. 2009, 4, 1433–1441.

37

Krishna, R.; Titus, E.; Costa, L. C.; Menezes, J. C. J. M. D. S.; Correia, M. R. P.; Pinto, S.; Ventura, J.; Araujo, J. P.; Cavaleiro, J. A. S.; Gracio, J. J. A. Facile synthesis of hydrogenated reduced graphene oxide via hydrogen spillover mechanism. J. Mater. Chem. 2012, 22, 10457–10459.

38

Schafer, R. A.; Englert, J. M.; Wehrfritz, P.; Bauer, W.; Hauke, F.; Seyller, T.; Hirsch, A. On the way to graphane— pronounced fluorescence of polyhydrogenated graphene. Angew. Chem. Int. Ed. 2013, 52, 754–757.

39

Pekker, S.; Salvetat, J. P.; Jakab, E.; Bonard, J. M.; Forró, L. Hydrogenation of carbon nanotubes and graphite in liquid ammonia. J. Phys. Chem. B 2001, 105, 7938–7943.

40

Chakraborty, S.; Chattopadhyay, J.; Guo, W. H.; Billups, W. E. Functionalization of potassium graphite. Angew. Chem. Int. Ed. 2007, 46, 4486–4488.

41

Savoia, D.; Trombini, C.; Umani-Ronchi, A. Applications of potassium-graphite and metals dispersed on graphite in organic synthesis. Pure Appl. Chem. 1985, 57, 1887–1896.

42

Matsumoto, R.; Akuzawa, N.; Takahashi, Y. Thermoelectric properties of cesium-graphite intercalation compounds. Mater. Trans. 2006, 47, 1458–1463.

43

Viculis, L. M.; Mack, J. J.; Mayer, O. M.; Hahm, H. T.; Haner, R. B. Intercation and exfoliation routes to graphite nanoplatelets. J. Mater. Chem. 2005, 15, 974–978.

File
12274_2014_562_MOESM1_ESM.pdf (3.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 25 June 2014
Revised: 06 August 2014
Accepted: 11 August 2014
Published: 17 September 2014
Issue date: March 2015

Copyright

© Tsinghua University Press and Springer‐Verlag Berlin Heidelberg 2014

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51222104) and the Fundamental Research Funds for the Central Universities.

Return