Journal Home > Volume 8 , Issue 3

Uniform silver-containing metal nanostructures with well-defined nanogaps hold great promise for ultrasensitive surface-enhanced Raman scattering (SERS) analyses. Nevertheless, the direct synthesis of such nanostructures with strong and stable SERS signals remains extremely challenging. Here, we report a DNA-mediated approach for the direct synthesis of gold-silver nano-mushrooms with interior nanogaps. The SERS intensities of these nano-mushrooms were critically dependent on the area of the nanogap between the gold head and the silver cap. We found that the formation of nanogaps was finely tunable by controlling the surface density of 6-carboxy-X-rhodamine (ROX) labeled single-stranded DNA (ssDNA) on the gold nanoparticles. We obtained nano-mushrooms in high yield with a high SERS signal enhancement factor of ~1.0 × 109, much higher than that for Au-Ag nanostructures without nanogaps. Measurements for single nanomushrooms show that these structures have both sensitive and reproducible SERS signals.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Bimetallic nano-mushrooms with DNA-mediated interior nanogaps for high-efficiency SERS signal amplification

Show Author's information Jianlei Shen1Jing Su1Juan Yan1Bin Zhao1Dongfang Wang1Siyi Wang2Kun Li1Mengmeng Liu1Yao He2Sanjay Mathur3Chunhai Fan1Shiping Song1,3( )
Division of Physical Biology & Bioimaging CenterShanghai Synchrotron Radiation FacilityShanghai Institute of Applied PhysicsChinese Academy of SciencesShanghai201800China
Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu KeyLaboratory for Carbon-based Functional Materials & DevicesSoochow UniversitySuzhou215123China
Institute of Inorganic ChemistryUniversity of CologneCologneD-50939Germany

Abstract

Uniform silver-containing metal nanostructures with well-defined nanogaps hold great promise for ultrasensitive surface-enhanced Raman scattering (SERS) analyses. Nevertheless, the direct synthesis of such nanostructures with strong and stable SERS signals remains extremely challenging. Here, we report a DNA-mediated approach for the direct synthesis of gold-silver nano-mushrooms with interior nanogaps. The SERS intensities of these nano-mushrooms were critically dependent on the area of the nanogap between the gold head and the silver cap. We found that the formation of nanogaps was finely tunable by controlling the surface density of 6-carboxy-X-rhodamine (ROX) labeled single-stranded DNA (ssDNA) on the gold nanoparticles. We obtained nano-mushrooms in high yield with a high SERS signal enhancement factor of ~1.0 × 109, much higher than that for Au-Ag nanostructures without nanogaps. Measurements for single nanomushrooms show that these structures have both sensitive and reproducible SERS signals.

Keywords: surface-enhanced Raman scattering, gold nanoparticle, biometallic nanostructure, nano-mushroom, nanogap

References(50)

1

Menzies, A. C. The Raman effect. Nature 1930, 125, 205–207.

2

Song, S. P.; Qin, Y.; He, Y.; Huang, Q.; Fan, C. C.; Chen, H. Y. Functional nanoprobes for ultrasensitive detection of biomolecules. Chem. Soc. Rev. 2010, 39, 4234–4243.

3

Fabian, H.; Anzenbacher, P. New developments in Raman spectroscopy of biological systems. Vib. Spectrosc. 1993, 4, 125–148.

4

Schatz, G. C. Theoretical studies of surface enhanced Raman scattering. Acc. Chem. Res. 1984, 17, 370–376.

5

Otto, A.; Mrozek, I.; Grabhorn, H.; Akemann, W. Surface- enhanced Raman scattering. J. Phys. : Condens, Matter. 1992, 4, 1143–1212.

6

Fleischmann, M.; Hendra, P. J.; McQuillan, A. J. Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 1974, 26, 163–166.

7

Nie, S. M.; Emory, S. R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 1997, 275, 1102–1106.

8

Kneipp, K.; Wang, Y.; Kneipp, H.; Perelman, L. T.; Itzkan, I.; Dasari, R. R.; Feld, M. S. Single molecule detection using surface-enhanced Raman scattering (SERS). Phys. Rev. Lett. 1997, 78, 1667–1670.

9

Lim, D. K.; Jeon, K. S.; Kim, H. M.; Nam, J. M.; Suh, Y. D. Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection. Nat. Mater. 2010, 9, 60–67.

10

Blackie, E. J.; Ru, E. C. L.; Etchegoin, P. G. Single-molecule surface-enhanced Raman spectroscopy of nonresonant molecules. J. Am. Chem. Soc. 2009, 131, 14466–14472.

11

Etchegoin, P. G.; Le Ru, E. C. A perspective on single molecule SERS: Current status and future challenges. Phys. Chem. Chem. Phys. 2008, 10, 6079–6089.

12

Wei, W.; Li, S. Z.; Millstone, J. E.; Banholzer, M. J.; Chen, X. D.; Xu, X. Y.; Schatz, G. C.; Mirkin, C. A. Surprisingly long-range surface-enhanced Raman scattering (SERS) on Au–Ni multisegmented nanowires. Angew. Chem. Int. Ed. 2009, 48, 4210–4212.

13

Wang, Y. Q.; Yan, B.; Chen, L. X. SERS tags: Novel optical nanoprobes for bioanalysis. Chem. Rev. 2012, 113, 1391– 1428.

14

Banholzer, M. J.; Millstone, J. E.; Qin, L. D.; Mirkin, C. A. Rationally designed nanostructures for surface-enhanced Raman spectroscopy. Chem. Soc. Rev. 2008, 37, 885–897.

15

Cao, Y. C.; Jin, R.; Mirkin, C. A. Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science 2002, 297, 1536–1540.

16

Ou, F. S.; Hu, M.; Naumov, I.; Kim, A.; Wu, W.; Bratkovsky, A. M.; Li, X. M.; Williams, R. S.; Li, Z. Y. Hot-spot engineering in polygonal nanofinger assemblies for surface enhanced Raman spectroscopy. Nano Lett. 2011, 11, 2538– 2542.

17

Lee, S. J.; Morrill, A. R.; Moskovits, M. Hot spots in silver nanowire bundles for surface-enhanced Raman spectroscopy. J. Am. Chem. Soc. 2006, 128, 2200–2201.

18

Jiang, J.; Bosnick, K.; Maillard, M.; Brus, L. Single molecule Raman spectroscopy at the junctions of large Ag nanocrystals. J. Phys. Chem. B 2003, 107, 9964–9972.

19

Li, W. Y.; Camargo, P. H. C.; Lu, X. M.; Xia, Y. N. Dimers of silver nanospheres: Facile synthesis and their use as hot spots for surface-enhanced Raman scattering. Nano Lett. 2008, 9, 485–490.

20

Qian, X. M.; Nie, S. M. Single-molecule and single- nanoparticle SERS: From fundamental mechanisms to biomedical applications. Chem. Soc. Rev. 2008, 37, 912–920.

21

Camden, J. P.; Dieringer, J. A.; Wang, Y. M.; Masiello, D. J.; Marks, L. D.; Schatz, G. C.; Van Duyne, R. P. Probing the structure of single-molecule surface-enhanced Raman scattering hot spots. J. Am. Chem. Soc. 2008, 130, 12616– 12617.

22

McMahon, J. M.; Li, S. Z.; Ausman, L. K.; Schatz, G. C. Modeling the wffect of amall gaps in surface-wnhanced Raman spectroscopy. J. Phys. Chem. C 2011, 116, 1627– 1637.

23

Talley, C. E.; Jackson, J. B.; Oubre, C.; Grady, N. K.; Hollars, C. W.; Lane, S. M.; Huser, T. R.; Nordlander, P.; Halas, N. J. Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates. Nano Lett. 2005, 5, 1569–1574.

24

Liusman, C.; Li, H.; Lu, G.; Wu, J.; Boey, F.; Li, S. Z.; Zhang, H. Surface-enhanced Raman scattering of Ag–Au nanodisk heterodimers. J. Phys. Chem. C 2012, 116, 10390– 10395.

25

Lu, G.; Li, H.; Wu, S. X.; Chen, P.; Zhang, H. High-density metallic nanogaps fabricated on solid substrates used for surface enhanced Raman scattering. Nanoscale 2012, 4, 860–863.

26

Fang, Y.; Seong, N. H.; Dlott, D. D. Measurement of the distribution of site enhancements in surface-enhanced Raman scattering. Science 2008, 321, 388–392.

27

Lim, D. K.; Jeon, K. S.; Hwang, J. H.; Kim, H.; Kwon, S.; Suh, Y. D.; Nam, J. M. Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap. Nat. Nanotechnol. 2011, 6, 452–460.

28

Osberg, K. D.; Rycenga, M.; Harris, N.; Schmucker, A. L.; Langille, M. R.; Schatz, G. C.; Mirkin, C. A. Dispersible gold nanorod dimers with sub-5 nm gaps as local amplifiers for surface-enhanced Raman scattering. Nano Lett. 2012, 12, 3828–3832.

29

Rivas, L.; Sanchez-Cortes, S.; García-Ramos, J. V.; Morcillo, G. Mixed silver/gold colloids: A study of their formation, morphology, and surface-enhanced Raman activity. Langmuir 2000, 16, 9722–9728.

30

Rycenga, M.; Cobley, C. M.; Zeng, J.; Li, W. Y.; Moran, C. H.; Zhang, Q.; Qin, D.; Xia, Y. N. Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem. Rev. 2011, 111, 3669–3712.

31

Kong, X. M.; Yu, Q.; Zhang, X. F.; Du, X. Z.; Gong, H.; Jiang, H. Synthesis and application of surface enhanced Raman scattering (SERS) tags of Ag@SiO2 core/shell nanoparticles in protein detection. J. Mater. Chem. 2012, 22, 7767–7774.

32

Lee, S.; Chon, H.; Yoon, S. Y.; Lee, E. K.; Chang, S. I.; Lim, D. W.; Choo, J. Fabrication of SERS-fluorescence dual modal nanoprobes and application to multiplex cancer cell imaging. Nanoscale 2012, 4, 124–129.

33

Li, J. M.; Ma, W. F.; Wei, C.; Guo, J.; Hu, J.; Wang, C. C. Poly(styrene-co-acrylic acid) core and silver nanoparticle/ silica shell composite microspheres as high performance surface-enhanced Raman spectroscopy (SERS) substrate and molecular barcode label. J. Mater. Chem. 2011, 21, 5992–5998.

34

Li, J. M.; Wei, C.; Ma, W. F.; An, Q.; Guo, J.; Hu, J.; Wang, C. C. Multiplexed SERS detection of DNA targets in a sandwich-hybridization assay using SERS-encoded core-shell nanospheres. J. Mater. Chem. 2012, 22, 12100–12106.

35

Shen, A. G.; Chen, L. F.; Xie, W.; Hu, J. C.; Zeng, A.; Richards, R.; Hu, J. M. Triplex Au–Ag–C core–shell nanoparticles as a novel Raman label. Adv. Funct. Mater. 2010, 20, 969–975.

36

Wang, Z. Y.; Zong, S. F.; Li, W.; Wang, C. L.; Xu, S. H.; Chen, H.; Cui, Y. P. SERS-fluorescence joint spectral encoding using organic–metal–QD hybrid nanoparticles with a huge encoding capacity for high-throughput biodetection: Putting theory into practice. J. Am. Chem. Soc. 2012, 134, 2993–3000.

37

Zhang, X. F; Kong, X. M.; Lv, Z. P.; Zhou, S. W; Du, X. Z. Bifunctional quantum dot-decorated Ag@SiO2 nanostructures for simultaneous immunoassays of surface-enhanced Raman scattering (SERS) and surface-enhanced fluorescence (SEF). J. Mater. Chem. B. 2013, 1, 2198–2204.

38

Feng, Y. H.; He, J. T.; Wang, H.; Tay, Y. Y.; Sun, H.; Zhu, L. F.; Chen, H. Y. An unconventional role of ligand in continuously tuning of metal–metal interfacial strain. J. Am. Chem. Soc. 2012, 134, 2004–2007.

39

Tan, L. H.; Xing, H.; Chen, H. Y.; Lu, Y. Facile and efficient preparation of anisotropic DNA-functionalized gold nanoparticles and their regioselective assembly. J. Am. Chem. Soc. 2013, 135, 17675–17678.

40

Lee, J. H.; Kim, G. H.; Nam, J. M. Directional synthesis and assembly of bimetallic nanosnowmen with DNA. J. Am. Chem. Soc. 2012, 134, 5456–5459.

41

Grabar, K. C.; Freeman, R. G.; Hommer, M. B.; Natan, M. J. Preparation and characterization of Au colloid monolayers. Anal. Chem. 1995, 67, 735–743.

42

Brown, K. R.; Lyon, L. A.; Fox, A. P.; Reiss, B. D.; Natan, M. J. Hydroxylamine seeding of colloidal Au nanoparticles. 3. Controlled formation of conductive Au films. Chem. Mater. 1999, 12, 314–323.

43

Hurst, S. J.; Lytton-Jean, A. K. R.; Mirkin, C. A. Maximizing DNA loading on a range of gold nanoparticle sizes. Anal. Chem. 2006, 78, 8313–8318.

44

Demers, L. M.; Mirkin, C. A.; Mucic, R. C.; Reynolds, R. A.; Letsinger, R. L.; Elghanian, R.; Viswanadham, G. A Fluorescence-based method for determining the surface coverage and hybridization efficiency of thiol-capped oligonucleotides bound to gold thin films and nanoparticles. Anal. Chem. 2000, 72, 5535–5541.

45

McFarland, A. D.; Young, M. A.; Dieringer, J. A.; Van Duyne, R. P. Wavelength-scanned surface-enhanced Raman excitation spectroscopy. J. Phys. Chem. B 2005, 109, 11279– 11285.

46

Demers, L. M.; Östblom, M.; Zhang, H.; Jang, N. H.; Liedberg, B.; Mirkin, C. A. Thermal desorption behavior and binding properties of DNA bases and nucleosides on gold. J. Am. Chem. Soc. 2002, 124, 11248–11249.

47

Porschke, D.; Jung, M. The conformation of single stranded oligonucleotides and of oligonucleotide–oligopeptide complexes from their rotation relaxation in the nanosecond time range. J. Biomol. Struct. Dyn. 1985, 2, 1173–1184.

48

Langille, M. R.; Personick, M. L.; Zhang, J.; Mirkin, C. A. Defining rules for the shape evolution of gold nanoparticles. J. Am. Chem. Soc. 2012, 134, 14542–14554.

49

Baker, T. A.; Friend, C. M.; Kaxiras, E. Nature of Cl bonding on the Au(111) surface: Evidence of a mainly covalent interaction. J. Am. Chem. Soc. 2008, 130, 3720–3721.

50

Gu, H. W.; Yang, Z. M.; Gao, J. H.; Chang, C. K.; Xu, B. Heterodimers of nanoparticles: Formation at a liquid–liquid interface and particle-specific surface modification by functional molecules. J. Am. Chem. Soc. 2005, 127, 34–35.

File
12274_2014_556_MOESM1_ESM.pdf (2.3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 06 June 2014
Revised: 28 July 2014
Accepted: 05 August 2014
Published: 13 September 2014
Issue date: March 2015

Copyright

© Tsinghua University Press and Springer‐Verlag Berlin Heidelberg 2014

Acknowledgements

Acknowledgements

We thank the National Basic Research Program of China (973 program) (Nos. 2013CB932802 and 2012CB932600), Alexander von Humboldt Foundation, and the National Natural Science Foundation of China (Nos. 91127037 and 91123037) for financial support.

Return