Journal Home > Volume 8 , Issue 3

Two flexible click-based porous organic polymers (CPP-F1 and CPP-F2) have been readily synthesized. SEM images show CPP-F1 is a 3D network, while CPP-F2 exhibits a granular morphology. Pd(OAc)2 can be easily incorporated into CPP-F1 and CPP-F2 to form Pd@CPP-F1 and Pd@CPP-F2, respectively. The interactions between the polymers and palladium are confirmed by solid-state 13C NMR, IR and XPS. Palladium nanoparticles (NPs) are formed after hydrogenation of olefins and nitrobenzene. Palladium NPs in CPP-F1 are well dispersed on the external surface of the polymer, while palladium NPs in CPP-F2 are located in the interior pores and on the external surface. In comparison with NPs in CPP-F1, the dual distribution of palladium NPs in CPP-F2 results in higher selectivity in the hydrogenation of 1, 3-cyclohexadiene to cyclohexane. The catalytic systems can be recycled several times without obvious loss of catalytic activity or agglomeration of palladium NPs. Hot filtration, mercury drop tests and ICP analyses suggest that the catalytic systems proceed via a heterogeneous pathway.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Spatial control of palladium nanoparticles in flexible click-based porous organic polymers for hydrogenation of olefins and nitrobenzene

Show Author's information Liuyi Li1,2Chunshan Zhou1,2Huaixia Zhao1,2Ruihu Wang1,2( )
State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhou350002China
Key Laboratory of Coal to Ethylene Glycol and Its Related TechnologyChinese Academy of SciencesFuzhou350002China

Abstract

Two flexible click-based porous organic polymers (CPP-F1 and CPP-F2) have been readily synthesized. SEM images show CPP-F1 is a 3D network, while CPP-F2 exhibits a granular morphology. Pd(OAc)2 can be easily incorporated into CPP-F1 and CPP-F2 to form Pd@CPP-F1 and Pd@CPP-F2, respectively. The interactions between the polymers and palladium are confirmed by solid-state 13C NMR, IR and XPS. Palladium nanoparticles (NPs) are formed after hydrogenation of olefins and nitrobenzene. Palladium NPs in CPP-F1 are well dispersed on the external surface of the polymer, while palladium NPs in CPP-F2 are located in the interior pores and on the external surface. In comparison with NPs in CPP-F1, the dual distribution of palladium NPs in CPP-F2 results in higher selectivity in the hydrogenation of 1, 3-cyclohexadiene to cyclohexane. The catalytic systems can be recycled several times without obvious loss of catalytic activity or agglomeration of palladium NPs. Hot filtration, mercury drop tests and ICP analyses suggest that the catalytic systems proceed via a heterogeneous pathway.

Keywords: palladium, nanoparticles, click reaction, heterogeneous catalysis, porous organic polymers

References(70)

1

Ding, S. Y.; Wang, W. Covalent organic frameworks (COFs): From design to applications. Chem. Soc. Rev. 2013, 42, 548–568.

2

Xiang, Z. H.; Cao, D. P. Porous covalent–organic materials: Synthesis, clean energy application and design. J. Mater. Chem. A 2013, 1, 2691–2718.

3

Dawson, R.; Cooper, A. I.; Adams, D. J. Nanoporous organic polymer networks. Prog. Polym. Sci. 2012, 37, 530–563.

4

Li, Y.; Fu, Z. Y.; Su, B. L. Hierarchically structured porous materials for energy conversion and storage. Adv. Funct. Mater. 2012, 22, 4634–4667.

5

Yuan, Y.; Sun, F. X.; Zhang, F.; Ren, H.; Guo, M. Y.; Cai, K.; Jing, X. F.; Gao, X.; Zhu, G. S. Targeted synthesis of porous aromatic frameworks and their composites for versatile, facile, efficacious, and durable antibacterial polymer coatings. Adv. Mater. 2013, 25, 6619–6624.

6

Patel, H. A.; Karadas, F.; Byun, J.; Park, J.; Deniz, E.; Canlier, A.; Jung, Y.; Atilhan, M.; Yavuz, C. T. Highly stable nanoporous sulfur-bridged covalent organic polymers for carbon dioxide removal. Adv. Funct. Mater. 2013, 23, 2270–2276.

7

Zhang, P.; Weng, Z. H.; Guo, J.; Wang, C. C. Solution- dispersible, colloidal, conjugated porous polymer networks with entrapped palladium nanocrystals for heterogeneous catalysis of the Suzuki–Miyaura coupling reaction. Chem. Mater. 2011, 23, 5243–5249.

8

Xie, Z. G.; Wang, C.; deKrafft, K. E.; Lin, W. B. Highly stable and porous cross-linked polymers for efficient photocatalysis. J. Am. Chem. Soc. 2011, 133, 2056–2059.

9

Chen, L.; Yang, Y.; Jiang, D. L. CMPs as scaffolds for constructing porous catalytic frameworks: A built-in heterogeneous catalyst with high activity and selectivity based on nanoporous metalloporphyrin polymers. J. Am. Chem. Soc. 2010, 132, 9138–9143.

10

Ma, H. P.; Ren, H.; Meng, S.; Sun, F. X.; Zhu, G. S. Novel porphyrinic porous organic frameworks for high performance separation of small hydrocarbons. Sci. Rep. 2013, 3, 2611.

11

Zou, X. Q.; Ren, H.; Zhu, G. S. Topology-directed design of porous organic frameworks and their advanced applications. Chem. Commun. 2013, 49, 3925–3936.

12

Kaur, P.; Hupp, J. T.; Nguyen, S. T. Porous organic polymers in catalysis: Opportunities and challenges. ACS Catal. 2011, 1, 819–835.

13

Ma, H. P.; Ren, H.; Zou, X. Q.; Meng, S.; Sun, F. X.; Zhu, G. S. Post-metalation of porous aromatic frameworks for highly efficient carbon capture from CO2 + N2 and CH4 + N2 mixtures. Polym. Chem. 2014, 5, 144–152.

14

Bleschke, C.; Schmidt, J.; Kundu, D. S.; Blechert, S.; Thomas, A. A chiral microporous polymer network as asymmetric heterogeneous organocatalyst. Adv. Synth. Catal. 2011, 353, 3101–3106.

15

Verde-Sesto, E.; Pintado-Sierra, M.; Corma, A.; Maya, E. M.; de la Campa, J. G.; Iglesias, M.; Sánchez, F. First prefunctionalised polymeric aromatic framework from mononitrotetrakis(iodophenyl)methane and its applications. Chem. Eur. J. 2014, 20, 5111–5120.

16

Saha, B.; Gupta, D.; Abu-Omar, M. M.; Modak, A.; Bhaumik, A. Porphyrin-based porous organic polymer-supported iron(Ⅲ) catalyst for efficient aerobic oxidation of 5-hydroxymethyl- furfural into 2, 5-furandicarboxylic acid. J. Catal. 2013, 299, 316–320.

17

Zhang, Y. G.; Riduan, S. N. Functional porous organic polymers for heterogeneous catalysis. Chem. Soc. Rev. 2012, 41, 2083–2094.

18

Totten, R. K.; Weston, M. H.; Park, J. K.; Farha, O. K.; Hupp, J. T.; Nguyen, S. T. Catalytic solvolytic and hydrolytic degradation of toxic methyl paraoxon with La(catecholate)- functionalized porous organic polymers. ACS Catal. 2013, 3, 1454–1459.

19

Xie, Y.; Wang, T. T.; Liu, X. H.; Zou, K.; Deng, W. Q. Capture and conversion of CO2 at ambient conditions by a conjugated microporous polymer. Nat. Commun. 2013, 4, 1960.

20

Li, Y. Q.; Ben, T.; Zhang, B. Y.; Fu, Y.; Qiu, S. L. Ultrahigh gas storage both at low and high pressures in KOH-activated carbonized porous aromatic frameworks. Sci. Rep. 2013, 3, 2420.

21

Zhang, Q.; Zhang, S. B.; Li, S. H. Novel functional organic network containing quaternary phosphonium and tertiary phosphorus. Macromolecules 2012, 45, 2981–2988.

22

Ren, S. J.; Dawson, R.; Laybourn, A.; Jiang, J. X.; Khimyak, Y.; Adams, D. J.; Cooper, A. I. Functional conjugated microporous polymers: From 1, 3, 5-benzene to 1, 3, 5-triazine. Polym. Chem. 2012, 3, 928–934.

23

Zhao, Y. C.; Zhang, L. M.; Wang, T.; Han, B. H. Microporous organic polymers with acetal linkages: Synthesis, characterization, and gas sorption properties. Polym. Chem. 2014, 5, 614–621.

24

Ding, S. Y.; Gao, J.; Wang, Q.; Zhang, Y.; Song, W. G.; Su, C. Y.; Wang, W. Construction of covalent organic framework for catalysis: Pd/COF-LZU1 in Suzuki-Miyaura coupling reaction. J. Am. Chem. Soc. 2011, 133, 19816–19822.

25

Jin, S. B.; Sakurai, T.; Kowalczyk, T.; Dalapati, S.; Xu, F.; Wei, H.; Chen, X.; Gao, J.; Seki, S.; Irle, S. et al. Two- dimensional tetrathiafulvalene covalent organic frameworks: Towards latticed conductive organic salts. Chem. Eur. J. , in press, DOI: 10.1002/chem.201402844.

26

Budd, P. M. Putting order into polymer networks. Science 2007, 316, 210–211.

27

Li, Z. L.; Liu, J. H.; Huang, Z. W.; Yang, Y.; Xia, C. G.; Li, F. W. One-pot synthesis of Pd nanoparticle catalysts supported on N-doped carbon and application in the domino carbonylation. ACS Catal. 2013, 3, 839–845.

28

Liang, M.; Su, R. X.; Huang, R. L.; Qi, W.; Yu, Y. J.; Wang, L. B.; He, Z. M. Facile in situ synthesis of silver nanoparticles on procyanidin-grafted eggshell membrane and their catalytic properties. ACS Appl. Mater. Interfaces 2014, 6, 4638–4649.

29

Song, F. J.; Wang, C.; Falkowski, J. M.; Ma, L. Q.; Lin, W. B. Isoreticular chiral metal-organic frameworks for asymmetric alkene epoxidation: Tuning catalytic activity by controlling framework catenation and varying open channel sizes. J. Am. Chem. Soc. 2010, 132, 15390–15398.

30

Rao, K. V.; Mohapatra, S.; Maji, T. K.; George, S. J. Guest- responsive reversible swelling and enhanced fluorescence in a super-absorbent, dynamic microporous polymer. Chem. Eur. J. 2012, 18, 4505–4509.

31

Suresh, V. M.; Bonakala, S.; Atreya, H. S.; Balasubramanian, S.; Maji, T. K. Amide functionalized microporous organic polymer (Am-MOP) for selective CO2 sorption and catalysis. ACS Appl. Mater. Interfaces 2014, 6, 4630–4637.

32

Liang, L. Y.; Astruc, D. The copper(I)-catalyzed alkyne-azide cycloaddition (CuAAC) "click" reaction and its applications. An overview. Coord. Chem. Rev. 2011, 255, 2933–2945.

33

Barner-Kowollik, C.; Du Prez, F. E.; Espeel, P.; Hawker, C. J.; Junkers, T.; Schlaad, H.; Van Camp, W. "Clicking" polymers or just efficient linking: What is the difference? Angew. Chem., Int. Ed. 2011, 50, 60–62.

34

Janreddy, D.; Kavala, V.; Kuo, C. W.; Chen, W. C.; Ramesh, C.; Kotipalli, T.; Kuo, T. S.; Chen, M. L.; He, C. H.; Yao, C. F. Copper(I)-catalyzed aerobic oxidative azide–alkene cycloaddition: An efficient synthesis of substituted 1, 2, 3- triazoles. Adv. Synth. Catal. 2013, 355, 2918–2927.

35

Crowley, J. D.; Gavey, E. L. Use of di-1, 4-substituted- 1, 2, 3-triazole "click" ligands to self-assemble dipalladium(Ⅱ) coordinatively saturated, quadruply stranded helicate cages. Dalton Trans. 2010, 39, 4035–4037.

36

Juríček, M.; Felici, M.; Contreras-Carballada, P.; Lauko, J.; Bou, S. R.; Kouwer, P. H. J.; Brouwer, A. M.; Rowan, A. E. Triazole–pyridine ligands: A novel approach to chromophoric iridium arrays. J. Mater. Chem. 2011, 21, 2104–2111.

37

Fleischel, O.; Wu, N.; Petitjean, A. Click-triazole: Coordination of 2-(1, 2, 3-triazol-4-yl)-pyridine to cations of traditional tetrahedral geometry (Cu(I), Ag(I)). Chem. Commun. 2010, 46, 8454–8456.

38

Wang, D.; Denux, D.; Ruiz, J.; Astruc, D. The clicked pyridyl-triazole ligand: From homogeneous to robust, recyclable heterogeneous mono- and polymetallic palladium catalysts for efficient Suzuki–Miyaura, Sonogashira, and Heck reactions. Adv. Synth. Catal. 2013, 355, 129–142.

39

Deraedt, C.; Salmon, L.; Ruiz, J.; Astruc, D. Efficient click- polymer-stabilized palladium nanoparticle catalysts for Suzuki–Miyaura reactions of bromoarenes and reduction of 4-nitrophenol in aqueous solvents. Adv. Synth. Catal. 2013, 355, 2992–3001.

40

Zhao, D.; Tan, S. W.; Yuan, D. Q.; Lu, W. G.; Rezenom, Y. H.; Jiang, H. L.; Wang, L. Q.; Zhou, H. C. Surface functionalization of porous coordination nanocages via click chemistry and their application in drug delivery. Adv. Mater. 2011, 23, 90–93.

41

Lucon, J.; Abedin, M. J.; Uchida, M.; Liepold, L.; Jolley, C. C.; Young, M.; Douglas, T. A click chemistry based coordination polymer inside small heat shock protein. Chem. Commun. 2010, 46, 264–266.

42

El-Sagheer, A. H.; Brown, T. Click nucleic acid ligation: Applications in biology and nanotechnology. Acc. Chem. Res. 2012, 45, 1258–1267.

43

Thirumurugan, P.; Matosiuk, D.; Jozwiak, K. Click chemistry for drug development and diverse chemical-biology applications. Chem. Rev. 2013, 113, 4905–4979.

44

Pandey, P.; Farha, O. K.; Spokoyny, A. M.; Mirkin, C. A.; Kanatzidis, M. G.; Hupp, J. T.; Nguyen, S. T. A "click- based" porous organic polymer from tetrahedral building blocks. J. Mater. Chem. 2011, 21, 1700–1703.

45

Holst, J. R.; Stöckel, E.; Adams, D. J.; Cooper, A. I. High surface area networks from tetrahedral monomers: Metal- catalyzed coupling, thermal polymerization, and "click" chemistry. Macromolecules 2010, 43, 8531–8538.

46

Plietzsch, O.; Schilling, C. I.; Grab, T.; Grage, S. L.; Ulrich, A. S.; Comotti, A.; Sozzani, P.; Muller, T.; Bräse, S. Click chemistry produces hyper-cross-linked polymers with tetrahedral cores. New J. Chem. 2011, 35, 1577–1581.

47

Xie, L. H.; Suh, M. P. High CO2-capture ability of a porous organic polymer bifunctionalized with carboxy and triazole groups. Chem. Eur. J. 2013, 19, 11590–11597.

48

Li, L. Y.; Chen, Z. L.; Zhong, H.; Wang, R. H. Urea-based porous organic frameworks: Effective supports for catalysis in neat water. Chem. Eur. J. 2014, 20, 3050–3060.

49

Li, L. Y.; Zhao, H. X.; Wang, J. Y.; Wang, R. H. Facile fabrication of ultrafine palladium nanoparticles with size- and location-control in click-based porous organic polymers. ACS Nano 2014, 8, 5352–5364.

50

Thomas, J. R.; Liu, X. J.; Hergenrother, P. J. Size-specific ligands for RNA hairpin loops. J. Am. Chem. Soc. 2005, 127, 12434–12435.

51

Leininger, S.; Stang, P. J.; Huang, S. P. Synthesis and characterization of organoplatinum dendrimers with 1, 3, 5- triethynylbenzene building blocks. Organometallics 1998, 17, 3981–3987.

52

Yuan, S. W.; Kirklin, S.; Dorney, B.; Liu, D. J.; Yu, L. P. Nanoporous polymers containing stereocontorted cores for hydrogen storage. Macromolecules 2009, 42, 1554–1559.

53

Ben, T.; Shi, K.; Cui, Y.; Pei, C. Y.; Zuo, Y.; Guo, H.; Zhang, D. L.; Xu, J.; Deng, F.; Tian, Z. Q. et al. Targeted synthesis of an electroactive organic framework. J. Mater. Chem. 2011, 21, 18208–18214.

54

Roy, S. G.; Haldar, U.; De, P. Remarkable swelling capability of amino acid based cross-linked polymer networks in organic and aqueous medium. ACS Appl. Mater. Interfaces 2014, 6, 4233–4241.

55

Devadoss, A.; Chidsey, C. E. Azide-modified graphitic surfaces for covalent attachment of alkyne-terminated molecules by "click" chemistry. J. Am. Chem. Soc. 2007, 129, 5370–5371.

56

Bebensee, F.; Bombis, C.; Vadapoo, S. R.; Cramer, J. R.; Besenbacher, F.; Gothelf, K. V.; Linderoth, T. R. On-surface azide-alkyne cycloaddition on Cu(111): Does it "click" in ultrahigh vacuum? J. Am. Chem. Soc. 2013, 135, 2136–2139.

57

Kang, N.; Park, J. H.; Ko, K. C.; Chun, J.; Kim, E.; Shin, H. W.; Lee, S. M.; Kim, H. J.; Ahn, T. K.; Lee, J. Y. et al. Tandem synthesis of photoactive benzodifuran moieties in the formation of microporous organic networks. Angew. Chem. Int. Ed. 2013, 6228–6232.

58

Du, X.; Sun, Y. L.; Tan, B. E.; Teng, Q. F.; Yao, X. J.; Su, C. Y.; Wang, W. Tröger's base-functionalised organic nanoporous polymer for heterogeneous catalysis. Chem. Commun. 2010, 46, 970–972.

59

Ben, T.; Pei, C. Y.; Zhang, D. L.; Xu, J.; Deng, F.; Jing, X. F.; Qiu, S. L. Gas storage in porous aromatic frameworks (PAFs). Energy Environ. Sci. 2011, 4, 3991–3999.

60

Moon, S. Y.; Jeon, E.; Bae, J. S.; Byeon, M.; Park, J. W. Polyurea networks via organic sol–gel crosslinking polymerization of tetrafunctional amines and diisocyanates and their selective adsorption and filtration of carbon dioxide. Polym. Chem. 2014, 5, 1124–1131.

61

Rose, M.; Klein, N.; Böhlmann, W.; Böhringer, B.; Fichtner, S.; Kaskel, S. New element organic frameworks via Suzuki coupling with high adsorption capacity for hydrophobic molecules. Soft Matter 2010, 6, 3918–3923.

62

Weber, J.; Schmidt, J.; Thomas, A.; Böhlmann, W. Micropore analysis of polymer networks by gas sorption and 129Xe nmr spectroscopy: Toward a better understanding of intrinsic microporosity. Langmuir 2010, 26, 15650–15656.

63

Liang, Q.; Liu, J.; Wei, Y. C.; Zhao, Z.; MacLachlan, M. J. Palladium nanoparticles supported on a triptycene-based microporous polymer: Highly active catalysts for CO oxidation. Chem. Commun. 2013, 49, 8928–8930.

64

Baerns, M. Basic principles in applied catalysis; Springer: Berlin, 2004.

DOI
65

Ertl, G.; Knözinger, H.; Schuth, F.; Weitkamp, J. Handbook of heterogeneous catalysis; Wiley-VCH: Weinheim, 1997.

DOI
66

Tew, M. W.; Janousch, M.; Huthwelker, T.; van Bokhoven, J. A. The roles of carbide and hydride in oxide-supported palladium nanoparticles for alkyne hydrogenation. J. Catal. 2011, 283, 45–54.

67

Hansen, T. W.; DeLaRiva, A. T.; Challa, S. R.; Datye, A. K. Sintering of catalytic nanoparticles: Particle migration or Ostwald ripening? Acc. Chem. Res. 2013, 46, 1720–1730.

68

La Torre, A.; Giménez-Lopéz, M. D. C.; Fay, M. W.; Rance, G. A.; Solomonsz, W. A.; Chamberlain, T. W.; Brown, P. D.; Khlobystov, A. N. Assembly, growth, and catalytic activity of gold nanoparticles in hollow carbon nanofibers. ACS Nano 2012, 6, 2000–2007.

69

Cárdenas-Lizana, F.; Berguerand, C.; Yuranov, I.; Kiwi- Minsker, L. Chemoselective hydrogenation of nitroarenes: Boosting nanoparticle efficiency by confinement within highly porous polymeric framework. J. Catal. 2013, 301, 103–111.

70

Lamblin, M.; Nassar-Hardy, L.; Hierso, J. C.; Fouquet, E.; Felpin, F. X. Recyclable heterogeneous palladium catalysts in pure water: Sustainable developments in Suzuki, Heck, Sonogashira and Tsuji–Trost reactions. Adv. Synth. Catal. 2010, 352, 33–79.

File
12274_2014_554_MOESM1_ESM.pdf (4.8 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 05 June 2014
Revised: 02 July 2014
Accepted: 02 August 2014
Published: 12 September 2014
Issue date: March 2015

Copyright

© Tsinghua University Press and Springer‐Verlag Berlin Heidelberg 2014

Acknowledgements

Acknowledgements

The authors acknowledge the National Basic Research Program of China (Nos. 2011CBA00502 and 2010CB933501), the National Natural Science Foundation of China (No. 21273239) and the Natural Science Foundation of Fujian Province (No. 2011J01064) for financial support.

Return