Journal Home > Volume 8 , Issue 2

In this work a novel strategy has been developed to prepare well-dispersed amine-functionalized SiO2 nanodot-coated layered double hydroxide nanocomposite (NH2-SiO2@LDH) via electrostatic interactions and condensation of (3-aminopropyl)triethoxysilane (APTES). This nanocomposite system is well dispersed in culture media and phosphate buffered saline, and exhibits low cytotoxicity and good biocompatibility. The fluorescence microscopy images and flow cytometry data indicate that such an NH2-SiO2@LDH nanocomposite is able to efficiently deliver small interfering RNA (siRNA) into the U2OS cell line to inhibit cell proliferation. Thus, NH2-SiO2@LDH nanocomposite has a great potential as a nanocarrier for efficient gene delivery.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Amine-functionalized SiO2 nanodot-coated layered double hydroxide nanocomposites for enhanced gene delivery

Show Author's information Li Li1Wenyi Gu1Jian Liu2Shiyu Yan1Zhi Ping Xu1( )
Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQLD4072Australia
Department of Chemical EngineeringCurtin UniversityPerthWA6845Australia

Abstract

In this work a novel strategy has been developed to prepare well-dispersed amine-functionalized SiO2 nanodot-coated layered double hydroxide nanocomposite (NH2-SiO2@LDH) via electrostatic interactions and condensation of (3-aminopropyl)triethoxysilane (APTES). This nanocomposite system is well dispersed in culture media and phosphate buffered saline, and exhibits low cytotoxicity and good biocompatibility. The fluorescence microscopy images and flow cytometry data indicate that such an NH2-SiO2@LDH nanocomposite is able to efficiently deliver small interfering RNA (siRNA) into the U2OS cell line to inhibit cell proliferation. Thus, NH2-SiO2@LDH nanocomposite has a great potential as a nanocarrier for efficient gene delivery.

Keywords: self-assembly, layered double hydroxide (LDH), gene delivery, functionalization

References(45)

1

Tan, S. J.; Kiatwuthinon, P.; Roh, Y. H.; Kahn, J. S.; Luo, D. Engineering nanocarriers for siRNA delivery. Small 2011, 7, 841-856.

2

Davis, M. E.; Zuckerman, J. E.; Choi, C. H. J.; Seligson, D.; Tolcher, A.; Alabi, C. A.; Yen, Y.; Heidel, J. D.; Ribas, A. Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature 2010, 464, 1067-1070.

3

Oh, Y. K.; Park, T. G. siRNA delivery systems for cancer treatment. Adv. Drug Delivery Rev. 2009, 61, 850-862.

4

Elbashir, S. M.; Harborth, J.; Lendeckel, W.; Yalcin, A.; Weber, K.; Tuschl, T. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 2001, 411, 494-498.

5

Chen, M.; Cooper, H. M.; Zhou, J. Z.; Bartlett, P. F.; Xu, Z. P. Reduction in the size of layered double hydroxide nanoparticles enhances the efficiency of sirna delivery. J. Colloid Interface Sci. 2013, 390, 275-281.

6

Tseng, Y. C.; Mozumdar, S.; Huang, L. Lipid-based systemic delivery of siRNA. Adv. Drug Delivery Rev. 2009, 61, 721-731.

7

Li, J.; Wang, Y.; Zhu, Y.; Oupický, D. Recent advances in delivery of drug-nucleic acid combinations for cancer treatment. J. Controlled Release 2013, 172, 589-600.

8

Tang, F.; Li, L.; Chen, D. Mesoporous silica nanoparticles: Synthesis, biocompatibility and drug delivery. Adv. Mater. 2012, 24, 1504-1534.

9

Peer, D.; Karp, J. M.; Hong, S.; Farokhzad, O. C.; Margalit, R.; Langer, R. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2007, 2, 751-760.

10

Ladewig, K.; Niebert, M.; Xu, Z. P.; Gray, P. P.; Lu, G. Q. M. Efficient siRNA delivery to mammalian cells using layered double hydroxide nanoparticles. Biomaterials 2010, 31, 1821-1829.

11

Chang, R. S.; Suh, M. S.; Kim, S.; Shim, G.; Lee, S.; Han, S. S.; Lee, K. E.; Jeon, H.; Choi, H. G.; Choi, Y. et al. Cationic drug-derived nanoparticles for multifunctional delivery of anticancer sirna. Biomaterials 2011, 32, 9785-9795.

12

Xu, Z. P.; Niebert, M.; Porazik, K.; Walker, T. L.; Cooper, H. M.; Middelberg, A. P. J.; Gray, P. P.; Bartlett, P. F.; Lu, G. Q. Subcellular compartment targeting of layered double hydroxide nanoparticles. J. Controlled Release 2008, 130, 86-94.

13

Ladewig, K.; Xu, Z. P.; Lu, G. Q. Layered double hydroxide nanoparticles in gene and drug delivery. Expert Opin. Drug Delivery 2009, 6, 907-922.

14

Khan, A. I.; Ragavan, A.; Fong, B.; Markland, C.; O'Brien, M.; Dunbar, T. G.; Williams, G. R.; O'Hare, D. Recent developments in the use of layered double hydroxides as host materials for the storage and triggered release of functional anions. Ind. Eng. Chem. Res. 2009, 48, 10196-10205.

15

Choi, S. J.; Choy, J. H. Layered double hydroxide nanoparticles as target-specific delivery carriers: Uptake mechanism and toxicity. Nanomedicine 2011, 6, 803-814.

16

Wong, Y.; Markham, K.; Xu, Z. P.; Chen, M.; Lu, G. Q.; Bartlett, P. F.; Cooper, H. M. Efficient delivery of siRNA to cortical neurons using layered double hydroxide nanoparticles. Biomaterials 2010, 31, 8770-8779.

17

Wong, Y. Y.; Cooper, H. M.; Zhang, K.; Chen, M.; Bartlett, P.; Xu, Z. P. Efficiency of layered double hydroxide nanoparticle-mediated delivery of siRNA is determined by nucleotide sequence. J. Colloid Interface Sci. 2012, 369, 453-459.

18

Choi, S. J.; Oh, J. M.; Choy, J. H. Anticancer drug-layered hydroxide nanohybrids as potent cancer chemotherapy agents. J. Phys. Chem. Solids 2008, 69, 1528-1532.

19

Sakurai, Y.; Hatakeyama, H.; Sato, Y.; Akita, H.; Takayama, K.; Kobayashi, S.; Futaki, S.; Harashima, H. Endosomal escape and the knockdown efficiency of liposomal-siRNA by the fusogenic peptide shGALA. Biomaterials 2011, 32, 5733-5742.

20

Taratula, O.; Kuzmov, A.; Shah, M.; Garbuzenko, O. B.; Minko, T. Nanostructured lipid carriers as multifunctional nanomedicine platform for pulmonary co-delivery of anticancer drugs and siRNA. J. Controlled Release 2013, 171, 349-357.

21

Oh, J. M.; Choi, S. J.; Lee, G. E.; Han, S. H.; Choy, J. H. Inorganic drug-delivery nanovehicle conjugated with cancer-cell-specific ligand. Adv. Funct. Mater. 2009, 19, 1617-1624.

22

Zhu, Y.; Li, Z.; Chen, M.; Cooper, H. M.; Lu, G. Q.; Xu, Z. P. Synthesis of robust sandwich-like SiO2@CdTe@SiO2 fluorescent nanoparticles for cellular imaging. Chem. Mater. 2012, 24, 421-423.

23

Shao, M. F.; Ning, F. Y.; Zhao, J. W.; Wei, M.; Evans, D. G.; Duan, X. Preparation of Fe3O4@SiO2@layered double hydroxide core-shell microspheres for magnetic separation of proteins. J. Am. Chem. Soc. 2012, 134, 1071-1077.

24

Du, X. J.; Zhang, D. S.; Gao, R. H.; Huang, L.; Shi, L. Y.; Zhang, J. P. Design of modular catalysts derived from NiMgAl-LDH@m-SiO2 with dual confinement effects for dry reforming of methane. Chem. Commun. 2013, 49, 6770-6772.

25

Liu, J.; Harrison, R.; Zhou, J. Z.; Liu, T. T.; Yu, C.; Lu, G. Q.; Qiao, S. Z.; Xu, Z. P. Synthesis of nanorattles with layered double hydroxide core and mesoporous silica shell as delivery vehicles. J. Mater. Chem. 2011, 21, 10641-10644.

26

Gary-Bobo, M.; Hocine, O.; Brevet, D.; Maynadier, M.; Raehm, L.; Richeter, S.; Charasson, V.; Loock, B.; Morère, A.; Maillard, P. et al. Cancer therapy improvement with mesoporous silica nanoparticles combining targeting, drug delivery and PDT. Int. J. Pharm. 2012, 423, 509-515.

27

Roesch, A.; Vultur, A.; Bogeski, I.; Wang, H.; Zimmermann, K. M.; Speicher, D.; Körbel, C.; Laschke, M. W.; Gimotty, P. A.; Philipp, S. E. et al. Overcoming intrinsic multidrug resistance in melanoma by blocking the mitochondrial respiratory chain of slow-cycling JARID1Bhigh cells. Cancer Cell 2013, 23, 811-825.

28

Rosenholm, J. M.; Sahlgren, C.; Linden, M. Towards multifunctional, targeted drug delivery systems using mesoporous silica nanoparticles—opportunities & challenges. Nanoscale 2010, 2, 1870-1883.

29

Gu, W. Y.; Jia, Z. F.; Truong, N. P.; Prasadam, I.; Xiao, Y.; Monteiro, M. J. Polymer nanocarrier system for endosome escape and timed release of sirna with complete gene silencing and cell death in cancer cells. Biomacromolecules 2013, 14, 3386-3389.

30

Xu, Z. P.; Stevenson, G.; Lu, C. Q.; Lu, G. Q.; Bartlett, P. F.; Gray, P. Stable suspension of layered double hydroxide nanoparticles in aqueous solution. J. Am. Chem. Soc. 2006, 128, 36-37.

31

Yokoi, T.; Sakamoto, Y.; Terasaki, O.; Kubota, Y.; Okubo, T.; Tatsumi, T. Periodic arrangement of silica nanospheres assisted by amino acids. J. Am. Chem. Soc. 2006, 128, 13664-13665.

32

Li, L.; Gu, W. Y.; Chen, J. Z.; Chen, W. Y.; Xu, Z. P. Co-delivery of siRNAs and anti-cancer drugs using layered double hydroxide nanoparticles. Biomaterials 2014, 35, 3331-3339.

33

Hartlen, K. D.; Athanasopoulos, A. P. T.; Kitaev, V. Facile preparation of highly monodisperse small silica spheres (15 to > 200 nm) suitable for colloidal templating and formation of ordered arrays. Langmuir 2008, 24, 1714-1720.

34

Xu, Z. P.; Stevenson, G.; Lu, C. Q.; Lu, G. Q. Dispersion and size control of layered double hydroxide nanoparticles in aqueous solutions. J. Phys. Chem. 2006, 110, 16923-16929.

35

Gu, Z.; Thomas, A. C.; Xu, Z. P.; Campbell, J. H.; Lu, G. Q. In vitro sustained release of LMWH from MgAl-layered double hydroxide nanohybrids. Chem. Mater. 2008, 20, 3715-3722.

36

Mandel, K.; Drenkova-Tuhtan, A.; Hutter, F.; Gellermann, C.; Steinmetz, H.; Sextl, G. Layered double hydroxide ion exchangers on superparamagnetic microparticles for recovery of phosphate from waste water. J. Mater. Chem. 2013, 1, 1840-1848.

37

Hartono, S. B.; Gu, W. Y.; Kleitz, F.; Liu, J.; He, L. Z.; Middelberg, A. P. J.; Yu, C. Z.; Lu, G. Q.; Qiao, S. Z. Poly-L-lysine functionalized large pore cubic mesostructured silica nanoparticles as biocompatible carriers for gene delivery. ACS Nano 2012, 6, 2104-2117.

38

Yu, C.; Chu, H.; Wan, Y.; Zhao, D. Synthesis of easily shaped ordered mesoporous titanium-containing silica. J. Mater. Chem. 2010, 20, 4705-4714.

39

Mishra, M.; Das, M.; Goswamee, R. Synthesis and coating of silica supported nickel oxide particles over ceramic pre-forms through sol-gel derived layered double hydroxides. J. Sol-Gel Sci. Technol. 2010, 54, 57-61.

40

Choi, S. J.; Oh, J. M.; Park, T.; Choy, J. H. Cellular toxicity of inorganic hydroxide nanoparticles. J. Nanosci. Nanotechnol. 2007, 7, 4017-4020.

41

Slowing, I. I.; Wu, C. W.; Vivero-Escoto, J. L.; Lin, V. S. Y. Mesoporous silica nanoparticles for reducing hemolytic activity towards mammalian red blood cells. Small 2009, 5, 57-62.

42

Yu, T.; Malugin, A.; Ghandehari, H. Impact of silica nanoparticle design on cellular toxicity and hemolytic activity. ACS Nano 2011, 5, 5717-5728.

43

Paula, A. J.; Martinez, D. S. T.; Araujo Júnior, R. T.; Souza Filho, A. G.; Alves, O. L. Suppression of the hemolytic effect of mesoporous silica nanoparticles after protein corona interaction: Independence of the surface microchemical environment. J. Braz. Chem. Soc. 2012, 23, 1807-1814.

44

Gu, J.; Su, S.; Li, Y.; He, Q.; Shi, J. Hydrophilic mesoporous carbon nanoparticles as carriers for sustained release of hydrophobic anti-cancer drugs. Chem. Commun. 2011, 47, 2101-2103.

45

Truong, N. P.; Gu, W.; Prasadam, I.; Jia, Z.; Crawford, R.; Xiao, Y.; Monteiro, M. J. An influenza virus-inspired polymer system for the timed release of sirna. Nat. Commun. 2013, 4, 1902.

File
12274_2014_552_MOESM1_ESM.pdf (1.9 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 27 May 2014
Revised: 20 July 2014
Accepted: 31 July 2014
Published: 10 September 2014
Issue date: February 2015

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014

Acknowledgements

Acknowledgements

The authors acknowledge the facilities and the scientific and technical assistance of the Australian Microscopy & Microanalysis Research Facility at the Centre for Microscopy and Microanalysis (CMM), The University of Queensland. This study was supported by ARC Future Fellowship (No. FT120100813), ARC DP grant (No. DP120104792) and the University of Queensland Postdoctoral Fellowship.

Return