Journal Home > Volume 8 , Issue 2

We report thermoelectric transport measurements across a graphene/hexagonal boron nitride (h-BN)/graphene heterostructure device. Using an AC lock-in technique, we are able to separate the thermoelectric contribution to the IV characteristics of these important device structures. The temperature gradient is measured optically using Raman spectroscopy, which enables us to explore thermoelectric transport produced at material interfaces, across length scales of just 1–2 nm. Based on the observed thermoelectric voltage (ΔV) and temperature gradient (ΔT), a Seebeck coefficient of -99.3 μV/K is ascertained for the heterostructure device. The obtained Seebeck coefficient can be useful for understanding the thermoelectric component in the cross-plane IV behaviors of emerging 2D heterostructure devices. These results provide an approach to probing thermoelectric energy conversion in two-dimensional layered heterostructures.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Thermoelectric transport across graphene/hexagonal boron nitride/graphene heterostructures

Show Author's information Chun-Chung Chen1Zhen Li1Li Shi2Stephen B. Cronin1( )
Department of Electrical EngineeringUniversity of Southern CaliforniaLos AngelesCA90089USA
Department of Mechanical Engineering and Texas Materials InstituteUniversity of Texas at AustinAustinTexas78712USA

Abstract

We report thermoelectric transport measurements across a graphene/hexagonal boron nitride (h-BN)/graphene heterostructure device. Using an AC lock-in technique, we are able to separate the thermoelectric contribution to the IV characteristics of these important device structures. The temperature gradient is measured optically using Raman spectroscopy, which enables us to explore thermoelectric transport produced at material interfaces, across length scales of just 1–2 nm. Based on the observed thermoelectric voltage (ΔV) and temperature gradient (ΔT), a Seebeck coefficient of -99.3 μV/K is ascertained for the heterostructure device. The obtained Seebeck coefficient can be useful for understanding the thermoelectric component in the cross-plane IV behaviors of emerging 2D heterostructure devices. These results provide an approach to probing thermoelectric energy conversion in two-dimensional layered heterostructures.

Keywords: heterostructure, graphene, thermoelectric, boron nitride, 2D materials

References(34)

1

Chen, C.C.; Aykol, M.; Chang, C. C.; Levi, A. F. J.; Cronin, S. B. Graphene-silicon Schottky diodes. Nano Lett. 2011, 11, 1863-1867.

2

Chen, C.C.; Chang, C. C.; Li, Z.; Levi A. F. J.; Cronin, S. B. Gate tunable graphene-silicon Ohmic/Schottky contacts. Appl. Phys. Lett. 2012, 101, 223113.

3

Cui, T.X.; Lv, R. T.; Huang, Z. H.; Chen, S. X.; Zhang, Z. X.; Gan, X.; Jia, Y.; Li, X. M.; Wang, K. L.; Wu, D. H.; Kang, F. Y. Enhanced efficiency of graphene/silicon heterojunction solar cells by molecular doping. J. Mater. Chem. A 2013, 1, 5736-5740.

4

Jie, W.; Zheng, F.; Hao, J. Graphene/gallium arsenide-based Schottky junction solar cells. Appl. Phys. Lett 2013, 103, 233111.

5

An, X. H.; Liu, F. Z.; Kar, S. Optimizing performance parameters of graphene-silicon and thin transparent graphite-silicon heterojunction solar cells. Carbon 2013, 57, 329-337.

6

Shi, E. Z.; Li, H. B.; Yang, L.; Zhang, L. H.; Li, Z.; Li, P. X.; Shang, Y. Y.; Wu, S. T.; Li, X. M.; Wei, J. Q.; Wang, K. L.; Zhu, H. W.; Wu, D. H.; Fang, Y.; Cao, A. Y. Colloidal antireflection coating improves graphene-silicon solar cells. Nano Lett. 2013, 13, 1776-1781.

7

Li, X.; Fan, L. L.; Li, Z.; Wang, K. L.; Zhong, M. L.; Wei, J. Q.; Wu, D. H.; Zhu, H. W. Boron doping of graphene for graphene-silicon p-n junction solar cells. Adv. Ener. Mater. 2012, 2, 425-429.

8

Lin, Y. X.; Xie, D.; Chen, Y.; Feng, T. T.; Shao, Q. M.; Tian, H.; Ren, T. L.; Li, X. M.; Li, X.; Fan, L. L.; Wang, K. L.; Wu, D. H.; Zhu, H. W. Optimization of graphene/silicon heterojunction solar cells. In Preceedings of 2012 38th IEEE Photovoltaic Specialists Conference (Pvsc), 2012. 2566-2570.

9

Feng, T. T.; Xie, D.; Lin, Y. X.; Zhao, H. M.; Chen, Y.; Tian, H.; Ren, T. L.; Li, X.; Li, Z.; Wang, K. L.; Wu, D. H.; Zhu, H. W. Efficiency enhancement of graphene/silicon-pillar-array solar cells by HNO3 and PEDOT-PSS. Nanoscale 2012, 4, 2130-2133.

10

Won, R. Photovoltaics: Graphene-silicon solar cells. Nat. Photonics 2010, 4, 411.

11

Britnell, L.; Gorbachev, R. V.; Jalil, R.; Belle, B. D.; Schedin, F.; Katsnelson, M. I.; Eaves, L.; Morozov, S. V.; Mayorov, A. S.; Peres, N. M. R.; Neto, A. H. C.; Leist, J.; Geim, A. K.; Ponomarenko, L. A.; Novoselov, K. S. Electron tunneling through ultrathin boron nitride crystalline barriers. Nano Lett. 2012, 12, 1707-1710.

12

Britnell, L.; Gorbachev, R. V.; Jalil, R.; Belle, B. D.; Schedin, F.; Mishchenko, A.; Georgiou, T.; Katsnelson, M. I.; Eaves, L.; Morozov, S. V.; Peres, N. M. R.; Leist, J.; Geim, A. K.; Novoselov, K. S.; Ponomarenko, L. A. Field-effect tunneling transistor based on vertical graphene heterostructures. Science 2012, 335, 947-950.

13

Britnell, L.; Gorbachev, R. V.; Geim, A. K.; Ponomarenko, L. A.; Mishchenko, A.; Greenaway, M. T.; Fromhold, T. M.; Novoselov, K. S.; Eaves, L. Resonant tunnelling and negative differential conductance in graphene transistors. Nat. Comm. 2013, 4, 1794.

14

Kim, S.; Shin, D. H.; Kim, C. O.; Kang, S. S.; Kim, J. M.; Jang, C. W.; Loo, S. S.; Lee, J. S.; Kim, J. H.; Choi, S. H.; Hwang, E. Graphene p-n vertical tunneling diodes. ACS Nano 2013, 7, 5168-5174.

15

Roy, K.; Padmanabhan, M.; Goswami, S.; Sai, T. P.; Ramalingam, G.; Raghavan, S.; Ghosh, A. Graphene-MoS2 hybrid structures for multifunctional photoresponsive memory devices. Nat. Nanotechnol. 2013, 8, 826-830.

16

Jo, I.; Hsu, I. K. Lee, Y. J.; Sadeghi, M. M.; Kim, S.; Cronin, S.; Tutuc, E.; Banerjee, S. K.; Yao, Z.; Shi, L. Low-Frequency acoustic phonon temperature distribution in electrically biased graphene. Nano Lett. 2011, 11, 85-90.

17

Pop, E.; Varshney, V.; Roy, A. K. Thermal properties of graphene: Fundamentals and applications. Mrs Bulletin 2012, 37, 1273-1281.

18

Chen, C. C.; Li, Z.; Shi, L.; Cronin, S. B. Thermal interface conductance across a graphene/hexagonal boron nitride heterojunction. Appl. Phys. Lett. 2014, 104, 081908.

19

Xie, Z. X.; Tang, L. M.; Pan, C. N.; Chen, Q.; Chen, K. Q. Ballistic thermoelectric properties in boron nitride nanoribbons. J. Appl. Phys. 2013, 114, 144311.

20

Yang, K. K.; Chen, Y. P.; D'Agosta, R.; Xie, Y. E.; Zhong, J. X.; Rubio, A. Enhanced thermoelectric properties in hybrid graphene/boron nitride nanoribbons. Phys. Rev. B 2012, 86, 045425.

21

Grosse, K. L.; Bae, M. H.; Lian, F. F.; Pop, E.; King, W. P. Nanoscale Joule heating, Peltier cooling and current crowding at graphene-metal contacts. Nat. Nanotechnol. 2011, 6, 287-290.

22

Li, X. S.; Cai, W. W.; An, J. H. Kim, S.; Nah, J.; Yang, D. X.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; Banerjee, S. K.; Colombo, L.; Ruoff, R. S. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312-1314.

23

Jo, I.; Pettes, M. T.; Kim, J.; Watanabe, K.; Taniguchi, T.; Yao, Z.; Shi, L. Thermal conductivity and phonon transport in suspended few-layer hexagonal boron nitride. Nano Lett. 2013, 13, 550-554.

24

Lee, G. H.; Yu, Y. J.; Lee, C.; Dean, C.; Shepard, K. L.; Kim, P.; Hone, J. Electron tunneling through atomically flat and ultrathin hexagonal boron nitride. Appl. Phys. Lett. 2011, 99, 243114.

25

Chen, C. C.; Bao, W. Z.; Theiss, J.; Dames, C.; Lau, C. N.; Cronin, S. B. Raman spectroscopy of ripple formation in suspended graphene. Nano Lett. 2009, 9, 4172-4176.

26

Chen, C. C.; Bao, W. Z.; Chang, C. C.; Zhao, Z.; Lau, C. N.; Cronin, S. B. Raman spectroscopy of substrate-induced compression and substrate doping in thermally cycled graphene. Phys. Rev. B, 2012, 85, 035431.

27

Shi, L.; Li, D. Y.; Yu, C. H.; Jang, W. Y.; Kim, D. Y.; Yao, Z.; Kim, P.; Majumdar, A. Measuring thermal and thermoelectric properties of one-dimensional nanostructures using a microfabricated device. J. Heat Trans. T. Asme 2013, 125, 1209-1209.

28

Yamane, T.; Nagai, N.; Katayama, S.; Todoki, M. Measurement of thermal conductivity of silicon dioxide thin films using a 3 omega method. J. Appl. Phys. 2002, 91, 9772-9776.

29

Li, X. M.; Yin, J.; Zhou, J. X.; Wang, Q.; Guo, W. L. Exceptional high Seebeck coefficient and gas-flow-induced voltage in multilayer graphene. Appl. Phys. Lett. 2012, 100, 183108.

30

Cho, S.; Kang, S. D.; Kim, W.; Lee, E. S.; Woo, S. J.; Kong, K. J.; Kim, I.; Kim, H. D.; Zhang, T.; Stroscio, J. A.; Kim, Y. H.; Lyeo, H. K. Thermoelectric imaging of structural disorder in epitaxial graphene. Nat. Mater. 2013, 12, 913-918.

31

Lee, E. S.; Cho, S.; Lyeo. H. K.; Kim, Y. H. Seebeck effect at the atomic scale. Phys. Rev. Lett. 2014, 112, 136601.

32

Mahan, G. D.; Woods, L. M. Multilayer thermionic refrigeration. Phys. Rev. Lett. 1998, 80, 4016-4019.

33

Mahan, G. D.; Sofo, J. O.; Bartkowiak, M. Multilayer thermionic refrigerator and generator. J. Appl. Phys. 1998, 83, 4683-4689.

34

Majumdar, A. Thermoelectricity in semiconductor nanostructures. Science 2004, 303, 777-778.

File
12274_2014_550_MOESM1_ESM.pdf (1,020.6 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 27 May 2014
Revised: 08 July 2014
Accepted: 28 July 2014
Published: 09 September 2014
Issue date: February 2015

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014

Acknowledgements

Acknowledgements

This research was supported by DOE Award Nos. DE-FG02-07ER46376 and DE-FG02-07ER46377.

Return