Journal Home > Volume 8 , Issue 2

We have designed and synthesized NaGdF4: Nd3+, Yb3+, Tm3+ magnetic nanophosphors with combined dual-mode downconversion (DC) and upconversion (UC) photoluminescence upon 800 nm excitation. Hexagonal-phase NaGdF4: Nd3+, Yb3+, Tm3+ nanocrystals (NCs) with an average size of 21 nm were synthesized using a solvothermal approach. Nd3+, Yb3+, Tm3+ triple-doped NaGdF4 NCs exhibit a broad range of photoluminescence peaks covering a near infrared first/second window (860–900, 1, 000, and 1, 060 nm), and visible emission including blue (475 nm), green (520 and 542 nm) and yellow (587 nm) after excitation at 800 nm. A mechanism involving circulation of energy over Gd3+ sublattices as bridge ions and final trapping by the initial activator ions (Nd3+) has been proposed. Penetration depth studies indicate that NIR emission is easily detected even at a large tissue thickness of 10 mm. These paramagnetic nanophosphors demonstrate a large magnetization value of 1.88 emu/g at 20 kOe and longitudinal relaxivity value of 1.2537 mM-1·S-1 as a T1-weighted magnetic resonance imaging contrast agent. These NaGdF4: Nd3+, Yb3+, Tm3+ NCs are promising for applications in biological and magnetic resonance imaging.


menu
Abstract
Full text
Outline
About this article

Magnetic and optical properties of NaGdF4: Nd3+, Yb3+, Tm3+ nanocrystals with upconversion/downconversion luminescence from visible to the near-infrared second window

Show Author's information Xianwen Zhang1,§Zhi Zhao2,§Xin Zhang3David B. Cordes4,5Brandon Weeks3Bensheng Qiu6Kailasnath Madanan7,8Dhiraj Sardar7Jharna Chaudhuri1( )
Department of Mechanical EngineeringTexas Tech UniversityLubbockTexas79409USA
Hefei National Laboratory for Physical Sciences at the MicroscaleUniversity of Science and Technology of ChinaHefeiAnhui230026China
Department of Chemical EngineeringTexas Tech UniversityLubbockTexas79409USA
Department of Chemistry & BiochemistryTexas Tech UniversityLubbockTexas79409USA
EaStCHEM School of Chemistry, University of St. Andrews, St. AndrewsKY16 9STUK
School of Information Science and TechnologyUniversity of Science and Technology of ChinaHefeiAnhui230026China
Department of Physics and AstronomyUniversity of Texas at San AntonioSan AntonioTexas78249USA
International School of PhotonicsCochin University of Science and TechnologyKochi682022India

§These authors contributed equally.

Abstract

We have designed and synthesized NaGdF4: Nd3+, Yb3+, Tm3+ magnetic nanophosphors with combined dual-mode downconversion (DC) and upconversion (UC) photoluminescence upon 800 nm excitation. Hexagonal-phase NaGdF4: Nd3+, Yb3+, Tm3+ nanocrystals (NCs) with an average size of 21 nm were synthesized using a solvothermal approach. Nd3+, Yb3+, Tm3+ triple-doped NaGdF4 NCs exhibit a broad range of photoluminescence peaks covering a near infrared first/second window (860–900, 1, 000, and 1, 060 nm), and visible emission including blue (475 nm), green (520 and 542 nm) and yellow (587 nm) after excitation at 800 nm. A mechanism involving circulation of energy over Gd3+ sublattices as bridge ions and final trapping by the initial activator ions (Nd3+) has been proposed. Penetration depth studies indicate that NIR emission is easily detected even at a large tissue thickness of 10 mm. These paramagnetic nanophosphors demonstrate a large magnetization value of 1.88 emu/g at 20 kOe and longitudinal relaxivity value of 1.2537 mM-1·S-1 as a T1-weighted magnetic resonance imaging contrast agent. These NaGdF4: Nd3+, Yb3+, Tm3+ NCs are promising for applications in biological and magnetic resonance imaging.

Keywords: photoluminescence, nanocrystals, window, energy transfer, near-infrared second

References(53)

1

Zhou, J.; Liu, Z.; Li, F. Upconversion nanophosphors for small-animal imaging. Chem. Soc. Rev. 2012, 41, 1323-1349.

2

Wei, J.; Qiu, J; Ren, L.; Zhang, K.; Wang, S.; Weeks, B. Size sorted multicolor fluorescence graphene oxide quantum dots obtained by differential velocity centrifugation. Sci. Adv. Mater. 2014, 6, 1052-1059.

3

Cai, W.; Shin, D.; Chen, K.; Gheysens, O.; Cao, Q.; Wang, S. X.; Gambhir, S. S.; Chen, X. Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects. Nano Lett. 2006, 6, 669-676.

4

Chance, B. Near-infrared images using continuous, phase-modulated, and pulsed light with quantitation of blood and blood oxygenation. Ann. N Y Acad. Sci. 1998, 838, 29-45.

5

Chen, G.; Ohulchanskyy, T. Y.; Liu, S.; Law, W.; Wu, F.; Swihart, M. T.; Ågren, H.; Prasad, P. N. Core/shell NaGdF4: Nd3+/NaGdF4 nanocrystals with efficient near-infrared to near-infrared downconversion photoluminescence for bioimaging applications. ACS Nano 2012, 6, 2969-2977.

6

Escobedo, J. O.; Rusin, O.; Lim, S.; Strongin, R. M. NIR dyes for bioimaging applications. Curr. Opin. Chem. Biol. 2010, 14, 64-70.

7

Michalet, X.; Pinaud, F. F.; Bentolila, L. A.; Tsay, J. M.; Doose, S.; Li, J. J.; Sundaresan, G.; Wu, A. M.; Gambhir, S. S.; Weiss. S. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 2005, 307, 538-544.

8

Wang, M.; Mi, C. C.; Wang, W. C.; Liu, C. H.; Wu, Y. F.; Xu, Z. R.; Mao, C. B.; Xu, S. K. Immunolabeling and NIR-excited fluorescent imaging of HeLa cells by using NaYF4: Yb, Er upconversion nanoparticles. ACS Nano 2009, 3, 1580-1586.

9

Welsher, K.; Sherlock, S. P.; Dai, H. Deep-tissue anatomical imaging of mice using carbon nanotube fluorophores in the second near-infrared window. Proc. Natl. Acad. Sci. USA 2011, 108, 8943-8948.

10

Smith, A. M.; Mancini, M. C.; Nie, S. Bioimaging: Second window for in vivo imaging. Nat. Nanotechnol. 2009, 4, 710-711.

11

Frangioni, J. V.; Nakayama, A.; Lim, Y. T.; Kim, S.; Stott, N. E.; Bawendi, M. G. Selection of quantum dot wavelengths for biomedical assays and imaging. Mol Imaging 2003, 2, 50-64.

12

Zhang, Y.; Hong, G.; Zhang, Y.; Chen, G.; Li, F.; Dai, H.; Wang, Q. Ag2S quantum dot: A bright and biocompatible fluorescent nanoprobe in the second near-infrared window. ACS Nano 2012, 6, 3695-3702.

13

Wehrenberg, B. L.; Wang, C. J.; Guyot-Sionnest, P. Interband and intraband optical studies of PbSe colloidal quantum dots. J. Phys. Chem. B 2002, 106, 10634-10640.

14

Bakueva, L.; Gorelikov, I.; Musikhin, S.; Zhao, X. S.; Sargent, E. H.; Kumacheva, E. PbS quantum dots with stable efficient luminescence in the near-IR spectral range. Adv. Mater. 2004, 16, 926-929.

15

Harrison, M. T.; Kershaw, S. V.; Burt, M. G.; Eychmüller, A.; Weller, H.; Rogach, A. L. Wet chemical synthesis and spectroscopic study of CdHgTe nanocrystals with strong near-infrared luminescence. Mater. Sci. Eng. B 2000, 69-70, 355-360.

16

Yi, H.; Ghosh, D.; Ham, M.; Qi, J.; Barone, P. W.; Strano, M. S.; Belcher, A. M. M13 phage-functionalized single-walled carbon nanotubes as nanoprobes for second near-infrared window fluorescence imaging of targeted tumors. Nano Lett. 2012, 12, 1176-1183.

17

Welsher, K.; Liu, Z.; Sherlock, S. P.; Robinson, J. T.; Chen, Z.; Daranciang, D.; Dai, H. A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice. Nat. Nanotechnol. 2009, 4, 773-780.

18

Robinson, J. T.; Liu, Z.; Sherlock, S. P.; Robinson, J. T.; Chen, Z.; Daranciang, D.; Dai, H. In vivo fluorescence imaging in the second near-infrared window with long circulating carbon nanotubes capable of ultrahigh tumor uptake. J. Am. Chem. Soc. 2012, 134, 10664-10669.

19

Cheng, L.; Yang, K.; Zhang, S.; Shao, M.; Lee, S.; Liu, Z. Highly-sensitive multiplexed in vivo imaging using PEGylated upconversion nanoparticles. Nano Res. 2010, 3, 722-732.

20

An, M.; Cui, J.; He, Q.; Wang, L. Down-/up-conversion luminescence nanocomposites for dual-modal cell imaging. J. Mater. Chem. B 2013, 1, 1333-1339.

21

Xing, H.; Bu, W.; Zhang, S.; Zheng, X.; Li, M.; Chen, F.; He, Q.; Zhou, L.; Peng, W.; Hua, Y. Multifunctional nanoprobes for upconversion fluorescence, MR and CT trimodal imaging. Biomaterials 2012, 33, 1079-1089.

22

Liu, K.; Liu, X.; Zeng, Q.; Zhang, Y.; Tu, L.; Liu, T.; Kong, X.; Wang, Y.; Cao, F.; Lambrechts, S. G.; et al. Covalently assembled NIR nanoplatform for simultaneous fluorescence imaging and photodynamic therapy of cancer cells. ACS Nano 2012, 6, 4054-4062.

23

Wu, S.; Milliron, D. J.; Aloni, S.; Altoea, V.; Talapin, D. V.; Cohen, B. E.; Schuck, P. J. Non-blinking and photostable upconverted luminescence from single lanthanide-doped nanocrystals. Proc. Natl. Acad. Sci. USA 2009, 106, 10917-10921.

24

Li, P.; Peng, Q.; Li, Y. D. Dual-mode luminescent colloidal spheres from monodisperse rare-earth fluoride nanocrystals. Adv. Mater. 2009, 21, 1945-1948.

25

Liu, Y.; Tu, D.; Zhu, H.; Li, R.; Luo, W.; Chen, X. A strategy to achieve efficient dual-mode luminescence of Eu3+ in lanthanides doped multifunctional NaGdF4 nanocrystals. Adv. Mater. 2010, 22, 3266-3271.

26

Bai, X.; Li, D.; Liu, Q.; Dong, B.; Xu, S.; Song, H. Concentration-controlled emission in LaF3: Yb3+/Tm3+ nanocrystals: Switching from UV to NIR regions. J. Mater. Chem. 2012, 22, 24698-24704.

27

Kumar, R.; Nyk, M.; Ohulchanskyy, T. Y.; Flask, C. A.; Prasad, P. N. Combined optical and MR bioimaging using rare earth ion doped NaYF4 nanocrystals. Adv. Funct. Mater. 2009, 19, 853-859.

28

Liu, Y.; Wang, D.; Shi, J.; Peng, Q.; Li, Y. D. Magnetic tuning of upconversion luminescence in lanthanide-doped bifunctional nanocrystals. Angew. Chem. Int. Ed. 2013, 52, 4366-4369.

29

Zhang, X. W.; Zhi, Z.; Zhang, X.; Marathe, A.; Cordes, D. B.; Weeks, B.; Chaudhuri, J. Tunable photoluminescence and energy transfer of YBO3: Tb3+, Eu3+ for white light emitting diodes. J. Mater. Chem. C 2013, 1, 7202-7207.

30

Zhang, X. W.; Marathe, A.; Sandeep, S.; Holtz, M.; Davis, M.; Hope-Weeks, L. J. Synthesis and photoluminescence properties of hierarchical architectures of YBO3: Eu3+. J. Mater. Chem. 2012, 22, 6485-6490.

31

Zhang, X. W.; Zhang, M. F.; Zhu, Y. C.; Wang, P. F.; Xue, F.; Gu, J.; Bi, H. Y.; Qian, Y. T. Hydrothermal synthesis and luminescent properties of LaPO4: Eu 3D microstructures with controllable phase and morphology. Mater. Res. Bull. 2011, 45, 1324-1329.

32

Pokhrel, M.; Mimun, L. C.; Yust, B.; Kumar, G. A.; Dhanale, A.; Tang, L.; Sardar, D. K. Stokes emission in GdF3: Nd3+ nanoparticles for bioimaging probes. Nanoscale 2014, 6, 1667-1674.

33

Li, X.; Wang, R.; Zhang, F.; Zhou, L.; Shen, D.; Yao, C.; Zhao, D. Nd3+ sensitized up/down converting dual-mode nanomaterials for efficient in vitro and in vivo bioimaging excited at 800 nm. Sci Rep. 2013, 3, 3536

34

Wang, Y.; Liu, G.; Sun, L.; Xiao, J.; Zhou, J.; Yan, C. Nd3+-sensitized upconversion nanophosphors: Efficient in vivo bioimaging probes with minimized heating effect. ACS Nano 2013, 7, 7200-7206.

35

Wang, X.; Yan, X.; Kan, C.; Ma, K.; Xiao, Y.; Xiao, S. Enhancement of blue emission in β-NaYbF4: Tm3+/Nd3+ nanophosphors synthesized by nonclosed hydrothermal synthesis method. Appl. Phys. B-Lasers Opt. 2010, 101, 623-629.

36

Wang, X.; Xiao, S.; Bu, Y.; Ding, J. Upconversion properties of Nd3+-Yb3+-Ho3+-doped β-Na(Y1.5Na0.5)F6 powders. J. Alloy. Compd. 2009, 477, 941-945.

37

Wang, Z.; Hao, J. H.; Chan, H. L. W. Down- and up-conversion photoluminescence, cathodoluminescence and paramagnetic properties of NaGdF4: Yb3+, Er3+ submicrondisks. J. Mater. Chem. 2010, 20, 3178-3185.

38

Gouveia-Netoa, A. S.; Costa, E. B. Sensitized thulium blue upconversion emission in Nd3+/Tm3+/Yb3+ triply doped lead and cadmium germanate glass excited around 800 nm. J. Appl. Phys. 2003, 94, 5678-5681.

39

Lupei, V.; Lupei, A.; Ikesue, A. Transparent Nd and (Nd, Yb)-doped Sc2O3 ceramics as potential new laser materials. Appl. Phys. Lett. 2005, 86, 111118.

40

Qiu, J.; Kawamoto, Y. Blue up-conversion luminescence and energy transfer process in Nd3+-Yb3+-Tm3+ Co-doped ZrF4-based glasses. J. Appl. Phys. 2002, 91, 954-959.

41

Dexter, D. L. A theory of sensitized luminescence in solids. J. Chem. Phys. 1953, 21, 836-850.

42

Balda, R.; Fernández, J. Infrared to visible upconversion of Nd3+ ions in KPb2Br5 low photon crystal. Opt. Express 2006, 14, 3993-4004.

43

Fernández, J.; Balda, R.; Iparraguirr, I.; Sanz, M.; Voda, M.; Al-Saleh, M.; Lobera, G. Upconversion processes and laser action in K5Nd(MoO4)4 stoichiometric crystal. Proc. of SPIE 2001, 4282, 258-265.

44

Wang, F.; Deng, R.; Wang, J.; Wang, Q.; Han, Y.; Zhu, H.; Chen, X.; Liu, X. Tuning upconversion through energy migration in core-shell nanoparticles. Nat. Mater. 2011, 10, 968-973.

45

Su, Q.; Han, S.; Xie, X.; Zhu, H.; Chen, H.; Chen, C.; Liu, R.; Chen, X.; Wang, F.; Liu, X. The effect of surface coating on energy migration-mediated upconversion. J. Am. Chem. Soc. 2012, 134, 20849-20857.

46

Meijer, J.; Aarts, L.; Van der Ende, B. M.; Vlugt, T. J. H.; Meijerink, A. Downconversion for solar cells in YF3: Nd3+, Yb3+. Phys. Rev. B 2010, 81, 035107.

47

Song, F.; Han, L.; Zou, C.; Su, J.; Zhang, K.; Yan, L.; Tian, J. Upconversion blue emission dependence on the pump mechanism for Tm3+-heavy-doped NaY(WO4)2 crystal. Appl. Phys. B 2007, 86, 653-660.

48

Wu, Y.; Shi, M.; Zhao, L.; Feng, W.; Li, F.; Huang, C. Visible-light-excited and europium-emissive nanoparticles for highly-luminescent bioimaging in vivo. Biomaterials 2014, 35, 5830-5839.

49

Boyer, J. C.; van Veggel, F. C. J. M. Absolute quantum yield measurements of colloidal NaYF4: Er3+, Yb3+ upconverting nanoparticles. Nanoscale 2010, 2, 1417-1419.

50

Wen, H.; Zhu, H.; Chen, X.; Hung, T. F.; Wang, B.; Zhu, G.; Yu, S. F.; Wang, F. Upconverting near-infrared light through energy management in core-shell-shell nanoparticles. Angew. Chem. Int. Ed. 2013, 52, 13419-13423.

51

Wong, H. T.; Chan, H. L. W.; Hao, J. H. Magnetic and luminescent properties of multifunctional GdF3: Eu3+ nanoparticles. Appl. Phys. Lett. 2009, 95, 022512.

52

Zeng, S.; Ren, G.; Xu, C.; Yang, Q. Modifying crystal phase, shape, size, optical and magnetic properties of monodispersed multifunctional NaYbF4 nanocrystals through lanthanide doping. CrystEngComm 2011, 13, 4276-4281.

53

Ren, G.; Zeng, S.; Hao, J. Tunable multicolor upconversion emissions and paramagnetic property of monodispersed bifunctional lanthanide-doped NaGdF4 nanorods. J. Phys. Chem. C 2011, 115, 20141-20147.

Publication history
Copyright
Acknowledgements

Publication history

Received: 16 April 2014
Revised: 23 July 2014
Accepted: 26 July 2014
Published: 09 September 2014
Issue date: February 2015

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014

Acknowledgements

Acknowledgements

We would like to acknowledge the support of the National Science Foundation (NSF) (Grant No. MRI0922898) for the TEM work. We also acknowledge the support from the Anhui Provincial Natural Science Foundation of China (No. 1308085QA06) and the National Science Foundation Partnership for Research and Education in Materials (NSF-PREM) (grant No. DMR-0934218). We also thank Archis Marathe for assistance with preparation of the manuscript.

Return