Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
We have designed and synthesized NaGdF4: Nd3+, Yb3+, Tm3+ magnetic nanophosphors with combined dual-mode downconversion (DC) and upconversion (UC) photoluminescence upon 800 nm excitation. Hexagonal-phase NaGdF4: Nd3+, Yb3+, Tm3+ nanocrystals (NCs) with an average size of 21 nm were synthesized using a solvothermal approach. Nd3+, Yb3+, Tm3+ triple-doped NaGdF4 NCs exhibit a broad range of photoluminescence peaks covering a near infrared first/second window (860–900, 1, 000, and 1, 060 nm), and visible emission including blue (475 nm), green (520 and 542 nm) and yellow (587 nm) after excitation at 800 nm. A mechanism involving circulation of energy over Gd3+ sublattices as bridge ions and final trapping by the initial activator ions (Nd3+) has been proposed. Penetration depth studies indicate that NIR emission is easily detected even at a large tissue thickness of 10 mm. These paramagnetic nanophosphors demonstrate a large magnetization value of 1.88 emu/g at 20 kOe and longitudinal relaxivity value of 1.2537 mM-1·S-1 as a T1-weighted magnetic resonance imaging contrast agent. These NaGdF4: Nd3+, Yb3+, Tm3+ NCs are promising for applications in biological and magnetic resonance imaging.
Zhou, J.; Liu, Z.; Li, F. Upconversion nanophosphors for small-animal imaging. Chem. Soc. Rev. 2012, 41, 1323-1349.
Wei, J.; Qiu, J; Ren, L.; Zhang, K.; Wang, S.; Weeks, B. Size sorted multicolor fluorescence graphene oxide quantum dots obtained by differential velocity centrifugation. Sci. Adv. Mater. 2014, 6, 1052-1059.
Cai, W.; Shin, D.; Chen, K.; Gheysens, O.; Cao, Q.; Wang, S. X.; Gambhir, S. S.; Chen, X. Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects. Nano Lett. 2006, 6, 669-676.
Chance, B. Near-infrared images using continuous, phase-modulated, and pulsed light with quantitation of blood and blood oxygenation. Ann. N Y Acad. Sci. 1998, 838, 29-45.
Chen, G.; Ohulchanskyy, T. Y.; Liu, S.; Law, W.; Wu, F.; Swihart, M. T.; Ågren, H.; Prasad, P. N. Core/shell NaGdF4: Nd3+/NaGdF4 nanocrystals with efficient near-infrared to near-infrared downconversion photoluminescence for bioimaging applications. ACS Nano 2012, 6, 2969-2977.
Escobedo, J. O.; Rusin, O.; Lim, S.; Strongin, R. M. NIR dyes for bioimaging applications. Curr. Opin. Chem. Biol. 2010, 14, 64-70.
Michalet, X.; Pinaud, F. F.; Bentolila, L. A.; Tsay, J. M.; Doose, S.; Li, J. J.; Sundaresan, G.; Wu, A. M.; Gambhir, S. S.; Weiss. S. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 2005, 307, 538-544.
Wang, M.; Mi, C. C.; Wang, W. C.; Liu, C. H.; Wu, Y. F.; Xu, Z. R.; Mao, C. B.; Xu, S. K. Immunolabeling and NIR-excited fluorescent imaging of HeLa cells by using NaYF4: Yb, Er upconversion nanoparticles. ACS Nano 2009, 3, 1580-1586.
Welsher, K.; Sherlock, S. P.; Dai, H. Deep-tissue anatomical imaging of mice using carbon nanotube fluorophores in the second near-infrared window. Proc. Natl. Acad. Sci. USA 2011, 108, 8943-8948.
Smith, A. M.; Mancini, M. C.; Nie, S. Bioimaging: Second window for in vivo imaging. Nat. Nanotechnol. 2009, 4, 710-711.
Frangioni, J. V.; Nakayama, A.; Lim, Y. T.; Kim, S.; Stott, N. E.; Bawendi, M. G. Selection of quantum dot wavelengths for biomedical assays and imaging. Mol Imaging 2003, 2, 50-64.
Zhang, Y.; Hong, G.; Zhang, Y.; Chen, G.; Li, F.; Dai, H.; Wang, Q. Ag2S quantum dot: A bright and biocompatible fluorescent nanoprobe in the second near-infrared window. ACS Nano 2012, 6, 3695-3702.
Wehrenberg, B. L.; Wang, C. J.; Guyot-Sionnest, P. Interband and intraband optical studies of PbSe colloidal quantum dots. J. Phys. Chem. B 2002, 106, 10634-10640.
Bakueva, L.; Gorelikov, I.; Musikhin, S.; Zhao, X. S.; Sargent, E. H.; Kumacheva, E. PbS quantum dots with stable efficient luminescence in the near-IR spectral range. Adv. Mater. 2004, 16, 926-929.
Harrison, M. T.; Kershaw, S. V.; Burt, M. G.; Eychmüller, A.; Weller, H.; Rogach, A. L. Wet chemical synthesis and spectroscopic study of CdHgTe nanocrystals with strong near-infrared luminescence. Mater. Sci. Eng. B 2000, 69-70, 355-360.
Yi, H.; Ghosh, D.; Ham, M.; Qi, J.; Barone, P. W.; Strano, M. S.; Belcher, A. M. M13 phage-functionalized single-walled carbon nanotubes as nanoprobes for second near-infrared window fluorescence imaging of targeted tumors. Nano Lett. 2012, 12, 1176-1183.
Welsher, K.; Liu, Z.; Sherlock, S. P.; Robinson, J. T.; Chen, Z.; Daranciang, D.; Dai, H. A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice. Nat. Nanotechnol. 2009, 4, 773-780.
Robinson, J. T.; Liu, Z.; Sherlock, S. P.; Robinson, J. T.; Chen, Z.; Daranciang, D.; Dai, H. In vivo fluorescence imaging in the second near-infrared window with long circulating carbon nanotubes capable of ultrahigh tumor uptake. J. Am. Chem. Soc. 2012, 134, 10664-10669.
Cheng, L.; Yang, K.; Zhang, S.; Shao, M.; Lee, S.; Liu, Z. Highly-sensitive multiplexed in vivo imaging using PEGylated upconversion nanoparticles. Nano Res. 2010, 3, 722-732.
An, M.; Cui, J.; He, Q.; Wang, L. Down-/up-conversion luminescence nanocomposites for dual-modal cell imaging. J. Mater. Chem. B 2013, 1, 1333-1339.
Xing, H.; Bu, W.; Zhang, S.; Zheng, X.; Li, M.; Chen, F.; He, Q.; Zhou, L.; Peng, W.; Hua, Y. Multifunctional nanoprobes for upconversion fluorescence, MR and CT trimodal imaging. Biomaterials 2012, 33, 1079-1089.
Liu, K.; Liu, X.; Zeng, Q.; Zhang, Y.; Tu, L.; Liu, T.; Kong, X.; Wang, Y.; Cao, F.; Lambrechts, S. G.; et al. Covalently assembled NIR nanoplatform for simultaneous fluorescence imaging and photodynamic therapy of cancer cells. ACS Nano 2012, 6, 4054-4062.
Wu, S.; Milliron, D. J.; Aloni, S.; Altoea, V.; Talapin, D. V.; Cohen, B. E.; Schuck, P. J. Non-blinking and photostable upconverted luminescence from single lanthanide-doped nanocrystals. Proc. Natl. Acad. Sci. USA 2009, 106, 10917-10921.
Li, P.; Peng, Q.; Li, Y. D. Dual-mode luminescent colloidal spheres from monodisperse rare-earth fluoride nanocrystals. Adv. Mater. 2009, 21, 1945-1948.
Liu, Y.; Tu, D.; Zhu, H.; Li, R.; Luo, W.; Chen, X. A strategy to achieve efficient dual-mode luminescence of Eu3+ in lanthanides doped multifunctional NaGdF4 nanocrystals. Adv. Mater. 2010, 22, 3266-3271.
Bai, X.; Li, D.; Liu, Q.; Dong, B.; Xu, S.; Song, H. Concentration-controlled emission in LaF3: Yb3+/Tm3+ nanocrystals: Switching from UV to NIR regions. J. Mater. Chem. 2012, 22, 24698-24704.
Kumar, R.; Nyk, M.; Ohulchanskyy, T. Y.; Flask, C. A.; Prasad, P. N. Combined optical and MR bioimaging using rare earth ion doped NaYF4 nanocrystals. Adv. Funct. Mater. 2009, 19, 853-859.
Liu, Y.; Wang, D.; Shi, J.; Peng, Q.; Li, Y. D. Magnetic tuning of upconversion luminescence in lanthanide-doped bifunctional nanocrystals. Angew. Chem. Int. Ed. 2013, 52, 4366-4369.
Zhang, X. W.; Zhi, Z.; Zhang, X.; Marathe, A.; Cordes, D. B.; Weeks, B.; Chaudhuri, J. Tunable photoluminescence and energy transfer of YBO3: Tb3+, Eu3+ for white light emitting diodes. J. Mater. Chem. C 2013, 1, 7202-7207.
Zhang, X. W.; Marathe, A.; Sandeep, S.; Holtz, M.; Davis, M.; Hope-Weeks, L. J. Synthesis and photoluminescence properties of hierarchical architectures of YBO3: Eu3+. J. Mater. Chem. 2012, 22, 6485-6490.
Zhang, X. W.; Zhang, M. F.; Zhu, Y. C.; Wang, P. F.; Xue, F.; Gu, J.; Bi, H. Y.; Qian, Y. T. Hydrothermal synthesis and luminescent properties of LaPO4: Eu 3D microstructures with controllable phase and morphology. Mater. Res. Bull. 2011, 45, 1324-1329.
Pokhrel, M.; Mimun, L. C.; Yust, B.; Kumar, G. A.; Dhanale, A.; Tang, L.; Sardar, D. K. Stokes emission in GdF3: Nd3+ nanoparticles for bioimaging probes. Nanoscale 2014, 6, 1667-1674.
Li, X.; Wang, R.; Zhang, F.; Zhou, L.; Shen, D.; Yao, C.; Zhao, D. Nd3+ sensitized up/down converting dual-mode nanomaterials for efficient in vitro and in vivo bioimaging excited at 800 nm. Sci Rep. 2013, 3, 3536
Wang, Y.; Liu, G.; Sun, L.; Xiao, J.; Zhou, J.; Yan, C. Nd3+-sensitized upconversion nanophosphors: Efficient in vivo bioimaging probes with minimized heating effect. ACS Nano 2013, 7, 7200-7206.
Wang, X.; Yan, X.; Kan, C.; Ma, K.; Xiao, Y.; Xiao, S. Enhancement of blue emission in β-NaYbF4: Tm3+/Nd3+ nanophosphors synthesized by nonclosed hydrothermal synthesis method. Appl. Phys. B-Lasers Opt. 2010, 101, 623-629.
Wang, X.; Xiao, S.; Bu, Y.; Ding, J. Upconversion properties of Nd3+-Yb3+-Ho3+-doped β-Na(Y1.5Na0.5)F6 powders. J. Alloy. Compd. 2009, 477, 941-945.
Wang, Z.; Hao, J. H.; Chan, H. L. W. Down- and up-conversion photoluminescence, cathodoluminescence and paramagnetic properties of NaGdF4: Yb3+, Er3+ submicrondisks. J. Mater. Chem. 2010, 20, 3178-3185.
Gouveia-Netoa, A. S.; Costa, E. B. Sensitized thulium blue upconversion emission in Nd3+/Tm3+/Yb3+ triply doped lead and cadmium germanate glass excited around 800 nm. J. Appl. Phys. 2003, 94, 5678-5681.
Lupei, V.; Lupei, A.; Ikesue, A. Transparent Nd and (Nd, Yb)-doped Sc2O3 ceramics as potential new laser materials. Appl. Phys. Lett. 2005, 86, 111118.
Qiu, J.; Kawamoto, Y. Blue up-conversion luminescence and energy transfer process in Nd3+-Yb3+-Tm3+ Co-doped ZrF4-based glasses. J. Appl. Phys. 2002, 91, 954-959.
Dexter, D. L. A theory of sensitized luminescence in solids. J. Chem. Phys. 1953, 21, 836-850.
Balda, R.; Fernández, J. Infrared to visible upconversion of Nd3+ ions in KPb2Br5 low photon crystal. Opt. Express 2006, 14, 3993-4004.
Fernández, J.; Balda, R.; Iparraguirr, I.; Sanz, M.; Voda, M.; Al-Saleh, M.; Lobera, G. Upconversion processes and laser action in K5Nd(MoO4)4 stoichiometric crystal. Proc. of SPIE 2001, 4282, 258-265.
Wang, F.; Deng, R.; Wang, J.; Wang, Q.; Han, Y.; Zhu, H.; Chen, X.; Liu, X. Tuning upconversion through energy migration in core-shell nanoparticles. Nat. Mater. 2011, 10, 968-973.
Su, Q.; Han, S.; Xie, X.; Zhu, H.; Chen, H.; Chen, C.; Liu, R.; Chen, X.; Wang, F.; Liu, X. The effect of surface coating on energy migration-mediated upconversion. J. Am. Chem. Soc. 2012, 134, 20849-20857.
Meijer, J.; Aarts, L.; Van der Ende, B. M.; Vlugt, T. J. H.; Meijerink, A. Downconversion for solar cells in YF3: Nd3+, Yb3+. Phys. Rev. B 2010, 81, 035107.
Song, F.; Han, L.; Zou, C.; Su, J.; Zhang, K.; Yan, L.; Tian, J. Upconversion blue emission dependence on the pump mechanism for Tm3+-heavy-doped NaY(WO4)2 crystal. Appl. Phys. B 2007, 86, 653-660.
Wu, Y.; Shi, M.; Zhao, L.; Feng, W.; Li, F.; Huang, C. Visible-light-excited and europium-emissive nanoparticles for highly-luminescent bioimaging in vivo. Biomaterials 2014, 35, 5830-5839.
Boyer, J. C.; van Veggel, F. C. J. M. Absolute quantum yield measurements of colloidal NaYF4: Er3+, Yb3+ upconverting nanoparticles. Nanoscale 2010, 2, 1417-1419.
Wen, H.; Zhu, H.; Chen, X.; Hung, T. F.; Wang, B.; Zhu, G.; Yu, S. F.; Wang, F. Upconverting near-infrared light through energy management in core-shell-shell nanoparticles. Angew. Chem. Int. Ed. 2013, 52, 13419-13423.
Wong, H. T.; Chan, H. L. W.; Hao, J. H. Magnetic and luminescent properties of multifunctional GdF3: Eu3+ nanoparticles. Appl. Phys. Lett. 2009, 95, 022512.
Zeng, S.; Ren, G.; Xu, C.; Yang, Q. Modifying crystal phase, shape, size, optical and magnetic properties of monodispersed multifunctional NaYbF4 nanocrystals through lanthanide doping. CrystEngComm 2011, 13, 4276-4281.
Ren, G.; Zeng, S.; Hao, J. Tunable multicolor upconversion emissions and paramagnetic property of monodispersed bifunctional lanthanide-doped NaGdF4 nanorods. J. Phys. Chem. C 2011, 115, 20141-20147.