Journal Home > Volume 8 , Issue 2

Topical formulations, commonly applied for treatment of anterior eye diseases, require frequent administration due to rapid clearance from the ocular surface, typically through the lacrimal drainage system or through over-spillage onto the lids. We report on a mucoadhesive nanoparticle drug delivery system that may be used to prolong the precorneal residence time of encapsulated drugs. The nanoparticles were formed from self-assembly of block copolymers composed of poly(D, L-lactide) and Dextran. The enhanced mucoadhesion properties were achieved by surface functionalizing the nanoparticles with phenylboronic acid. The nanoparticles encapsulated up to 12 wt.% of Cyclosporine A (CycA) and sustained the release for up to five days at a clinically relevant dose, which led us to explore the therapeutic efficacy of the formulation with reduced administration frequency. By administering CycA-loaded nanoparticles to dry eye-induced mice once a week, inflammatory infiltrates were eliminated and the ocular surface completely recovered. The same once a week dosage of the nanoparticles also showed no signs of physical irritation or inflammatory responses in acute (1 week) and chronic (12 weeks) studies in healthy rabbit eyes. These findings indicate that the nanoparticles may significantly reduce the frequency of administration for effective treatment of anterior eye diseases without causing ocular irritation.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Phenylboronic acid modified mucoadhesive nanoparticle drug carriers facilitate weekly treatment of experimentallyinduced dry eye syndrome

Show Author's information Shengyan Liu1,2Chu Ning Chang1Mohit S. Verma1,2Denise Hileeto3Alex Muntz3Ulrike Stahl3Jill Woods3Lyndon W. Jones2,3Frank X. Gu1,2( )
Department of Chemical EngineeringUniversity of Waterloo, WaterlooN2L 3G1Canada
Waterloo Institute for NanotechnologyUniversity of Waterloo, WaterlooN2L 3G1Canada
Centre for Contact Lens ResearchUniversity of Waterloo, WaterlooN2L 3G1Canada

Abstract

Topical formulations, commonly applied for treatment of anterior eye diseases, require frequent administration due to rapid clearance from the ocular surface, typically through the lacrimal drainage system or through over-spillage onto the lids. We report on a mucoadhesive nanoparticle drug delivery system that may be used to prolong the precorneal residence time of encapsulated drugs. The nanoparticles were formed from self-assembly of block copolymers composed of poly(D, L-lactide) and Dextran. The enhanced mucoadhesion properties were achieved by surface functionalizing the nanoparticles with phenylboronic acid. The nanoparticles encapsulated up to 12 wt.% of Cyclosporine A (CycA) and sustained the release for up to five days at a clinically relevant dose, which led us to explore the therapeutic efficacy of the formulation with reduced administration frequency. By administering CycA-loaded nanoparticles to dry eye-induced mice once a week, inflammatory infiltrates were eliminated and the ocular surface completely recovered. The same once a week dosage of the nanoparticles also showed no signs of physical irritation or inflammatory responses in acute (1 week) and chronic (12 weeks) studies in healthy rabbit eyes. These findings indicate that the nanoparticles may significantly reduce the frequency of administration for effective treatment of anterior eye diseases without causing ocular irritation.

Keywords: nanoparticle, drug delivery, biocompatibility, copolymer, mucoadhesion, ophthalmology

References(62)

1

Gaudana, R.; Jwala, J.; Boddu, S. H. S.; Mitra, A. K. Recent perspectives in ocular drug delivery. Pharm. Res. 2009, 26, 1197-1216.

2

Diebold, Y.; Calonge, M. Applications of nanoparticles in ophthalmology. Prog. Retin. Eye Res. 2010, 29, 596-609.

3

Liu, S.; Jones, L.; Gu, F. X. Nanomaterials for ocular drug delivery. Macromol. Biosci. 2012, 12, 608-620.

4

Cho, H. K.; Cheong, I. W.; Lee, J. M.; Kim, J. H. Polymeric nanoparticles, micelles and polymersomes from amphiphilic block copolymer. Korean. J. Chem. Eng. 2010, 27, 731-740.

5

Subbiah, R.; Veerapandian, M.; Yun, K. S. Nanoparticles: Functionalization and multifunctional applications in biomedical sciences. Curr. Med. Chem. 2010, 17, 4559-4577.

6

Gavini, E.; Chetoni, P.; Cossu, M.; Alvarez, M. G.; Saettone, M. F.; Giunchedi, P. PLGA microspheres for the ocular delivery of a peptide drug, vancomycin using emulsification/spray-drying as the preparation method: In vitro/in vivo studies. Eur. J. Pharm. Biopharm. 2004, 57, 207-212.

7

Yoncheva, K.; Vandervoort, J.; Ludwig, A. Development of mucoadhesive poly(lactide-co-glycolide) nanoparticles for ocular application. Pharm. Dev. Technol. 2011, 16, 29-35.

8

Gupta, H.; Aqil, M.; Khar, R. K.; Ali, A.; Bhatnagar, A.; Mittal, G. Sparfloxacin-loaded PLGA nanoparticles for sustained ocular drug delivery. Nanomed-nanotechnol. 2010, 6, 324-333.

9

Lee, V. H. L. Review: New directions in the optimization of ocular drug delivery. J. Ocul. Pharmacol. 1990, 6, 157-164.

10

Zimmer, A.; Kreuter, J. Microspheres and nanoparticles used in ocular delivery systems. Adv. Drug Deliv. Rev. 1995, 16, 61-73.

11

Bazile, D.; Prudˈhomme, C.; Bassoullet, M. T.; Marlard, M.; Spenlehauer, G.; Veillard, M. Stealth Me. PEG-PLA nanoparticles avoid uptake by the mononuclear phagocytes system. J. Pharm. Sci. 1995, 84, 493-498.

12

Dhar, S.; Gu, F. X.; Langer, R.; Farokhzad, O. C.; Lippard, S. J. Targeted delivery of cisplatin to prostate cancer cells by aptamer functionalized Pt(Ⅳ) prodrug-PLGA-PEG nanoparticles. Proc. Natl. Acad. Sci. U.S.A. 2008, 105, 17356-17361.

13

Dong, Y. and Feng, S. -S. In vitro and in vivo evaluation of methoxy polyethylene glycol-polylactide (MPEG-PLA) nanoparticles for small-molecule drug chemotherapy. Biomaterials 2007, 28, 4154-4160.

14

Esmaeili, F.; Ghahremani, M. H.; Ostad, S. N.; Atyabi, F.; Seyedabadi, M.; Malekshahi, M. R.; Amini, M.; Dinarvand, R. Folate-receptor-targeted delivery of docetaxel nanoparticles prepared by PLGA-PEG-folate conjugate. J. Drug Target. 2008, 16, 415-423.

15

Gao, Y.; Sun, Y.; Ren, F.; Gao, S. PLGA-PEG-PLGA hydrogel for ocular drug delivery of dexamethasone acetate. Drug Dev. Ind. Pharm. 2010, 36, 1131-1138.

16

Vega, E.; Egea, M. A.; Calpena, A. C.; Espina, M.; Garcia, M. L. Role of hydroxypropyl-β-cyclodextrin on freeze-dried and gamma-irradiated PLGA and PLGA-PEG diblock copolymer nanospheres for ophthalmic flurbiprofen delivery. Int. J. Nanomedicine 2012, 7, 1357-1371.

17

Yang, J.; Yan, J.; Zhou, Z.; Amsden, B. G. Dithiol-PEG-PDLLA micelles: Preparation and evaluation as potential topical ocular delivery vehicle. Biomacromolecules 2014, 15, 1346-1354

18

Verma, M. S.; Liu, S.; Chen, Y. Y.; Meerasa, A.; Gu, F. X. Size-tunable nanoparticles composed of Dextran-b-poly(D, L-lactide) for drug delivery applications. Nano. Res. 2012, 5, 49-61.

19

Goodwin, A. P.; Tabakman, S. M.; Welsher, K.; Sherlock, S. P.; Prencipe, G.; Dai, H. Phospholipid-Dextran with a single coupling point: A useful amphiphile for functionalization of nanomaterials. J. Am. Chem. Soc. 2009, 131, 289-296.

20

Ludwig, A. The use of mucoadhesive polymers in ocular drug delivery. Adv. Drug Deliv. Rev. 2005, 57, 1595-1639.

21

Shaikh, R.; Raj Singh, T. R.; Garland, M. J.; Woolfson, A. D.; Donnelly, R. F. Mucoadhesive drug delivery systems. J. Pharm. Bioall. 2011, 3, 89-100.

22

Khutoryanskiy, V. V. Advances in mucoadhesion and mucoadhesive polymers. Macromol. Biosci. 2011, 11, 748-764.

23

du Toit, L. C.; Pillay, V.; Choonara, Y. E.; Govender, T.; Carmichael, T. Ocular drug delivery—A look towards nanobioadhesives. Expert Opin. Drug Deliv. 2011, 8, 71-94.

24

Li, N.; Zhuang, C.; Wang, M.; Sui, C.; Pan, W. Low molecular weight chitosan-coated liposomes for ocular drug delivery: In vitro and in vivo studies. Drug Deliv. 2012, 19, 28-35.

25

Mahmoud, A. A.; El-Feky, G. S.; Kamel, R.; Awad, G. E. A. Chitosan/sulfobutylether-beta-cyclodextrin nanoparticles as a potential approach for ocular drug delivery. Int. J. Pharm. 2011, 413, 229-236.

26

Abdelbary, G. Ocular ciprofloxacin hydrochloride mucoadhesive chitosan-coated liposomes. Pharm. Dev. Technol. 2011, 8, 44-56.

27

Li, N.; Zhuang, C.; Wang, M.; Sun, X.; Nie, S.; Pan, W. Liposome coated with low molecular weight chitosan and its potential use in ocular drug delivery. Int. J. Pharm. 2009, 379, 131-138.

28

De Campos, A. M.; Sanchez, A.; Alonso, M. J. Chitosan nanoparticles: A new vehicle for the improvement of the delivery of drugs to the ocular surface. Application to cyclosporin A. Int. J. Pharm. 2001, 224, 159-168.

29

Matsumoto, A.; Cabral, H.; Sato, N.; Kataoka, K.; Miyahara, Y. Assessment of tumor metastasis by the direct determination of cell-membrane sialic acid expression. Angew. Chem. Int. Edit. 2010, 49, 5494-5497.

30

Matsumoto, A.; Sato, N.; Cabral, H.; Kataoka, K.; Miyahara, Y. Self-assembled molecular gate field effect transistor for label free sialic acid detection at cell membrane. Eurosensor XXIV Conference 2010, 5, 926-929.

31

Matsumoto, A.; Sato, N.; Kataoka, K.; Miyahara, Y. Noninvasive sialic acid detection at cell membrane by using phenylboronic acid modified self-assembled monolayer gold electrode. J. Am. Chem. Soc. 2009, 131, 12022-12023.

32

Ivanov, A. E.; Eccles, J.; Panahi, H. A.; Kumar, A.; Kuzimenkova, M. V.; Nilsson, L.; Bergenstahl, B.; Long, N.; Phillips, G. J.; Mikhalovsky, S. V.; et al. Boronate-containing polymer brushes: Characterization, interaction with saccharides and mammalian cancer cells. J. Biomed. Mater. Res. A. 2009, 88A, 213-225.

33

Liu, A.; Peng, S.; Soo, J. C.; Kuang, M.; Chen, P.; Duan, H. Quantum dots with phenylboronic acid tags for specific labeling of sialic acids on living cells. Anal. Chem. 2011, 83, 1124-1130.

34

Otsuka, H.; Uchimura, E.; Koshino, H.; Okano, T.; Kataoka, K. Anomalous binding profile of phenylboronic acid with N-acetylneuraminic acid (Neu5Ac) in aqueous solution with varying pH. J. Am. Chem. Soc. 2003, 125, 3493-3502.

35

Cheng, C.; Zhang, X.; Wang, Y.; Sun, L.; Li, C. Phenylboronic acid-containing block copolymers: Synthesis, self-assembly, and application for intracellular delivery of proteins. New J. Chem. 2012, 36, 1413-1421.

36

Deshayes, S.; Cabral, H.; Ishii, T.; Miura, Y.; Kobayashi, S.; Yamashita, T.; Matsumoto, A.; Miyahara, Y.; Nishiyama, N.; Kataoka, K. Phenylboronic acid-installed polymeric micelles for targeting sialylated epitopes in solid tumors. J. Am. Chem. Soc. 2013, 135, 15501-15507.

37

Liu, S.; Jones, L.; Gu, F. X. Development of mucoadhesive drug delivery system using phenylboronic acid functionalized poly(D, L-lactide)-b-Dextran nanoparticles. Macromol. Biosci. 2012, 12, 1622-1626.

38

Shen, J.; Wang, Y.; Ping, Q.; Xiao, Y.; Huang, X. Mucoadhesive effect of thiolated PEG stearate and its modified NLC for ocular drug delivery. J. Controlled Release 2009, 137, 217-223.

39

Vijay, A. K.; Sankaridurg, P.; Zhu, H.; Willcox, M. D. P. Guinea pig models of acute keratitis responses. Cornea 2009, 28, 1153-1159.

40

Cole, N.; Hume, E. B. H.; Vijay, A. K.; Sankaridurg, P.; Kumar, N.; Willcox, M. D. P. In vivo performance of melimine as an antimicrobial coating for contact lenses in models of CLARE and CLPU. Invest. Ophthalmol. Vis. Sci. 2010, 5, 390-395.

41

Diebold, Y.; Jarrin, M.; Saez, V.; Carvalho, E. L. S.; Orea, M.; Calonge, M.; Seijo, B.; Alonso, M. J. Ocular drug delivery by liposome-chitosan nanoparticle complexes (LCS-NP). Biomaterials 2007, 28, 1553-1564.

42

Dursun, D.; Wang, M.; Monroy, D.; Li, D. Q.; Lokeshwar, B. L.; Stern, M. E.; Pflugfelder, S. C. A mouse model of keratoconjunctivitis sicca. Invest. Ophthalmol. Vis. Sci. 2002, 43, 632-638.

43

Bromba, C.; Carrie, P.; Chui, J. K. W.; Fyles, T. M. Phenyl boronic acid complexes of diols and hydroxyacids. Supramol. Chem. 2009, 21, 81-88.

44

Shiomori, K.; Ivanov, A. E.; Galaev, I. Y.; Kawano, Y.; Mattiasson, B. Thermoresponsive properties of sugar sensitive copolymer of N-isopropylacrylamide and 3-(acrylamido)phenylboronic acid. Macromol. Chem. Physic. 2004, 205, 27-34.

45

Kitano, S.; Kataoka, K.; Koyama, Y.; Okano, T.; Sakurai, Y. Glucose-responsive complex-formation between poly(vinyl alcohol) and poly(n-vinyl-2-pyrrolidone) with pendent phenylboronic acid moieties. Makromol. Chem-Rapid. 1991, 12, 227-233.

46

Wang, Y.; Zhang, X.; Han, Y.; Cheng, C.; Li, C. pH- and glucose-sensitive glycopolymer nanoparticles based on phenylboronic acid for triggered release of insulin. Carbohydr. Polym. 2012, 89, 124-131.

47

Lee, D.; Shirley, S. A.; Lockey, R. F.; Mohapatra, S. S. Thiolated chitosan nanoparticles enhance anti-inflammatory effects of intranasally delivered theophylline. Resp. Res. 2006, 7, 112.

48

Yuan, X. -B.; Li, H.; Yuan, Y. Preparation of cholesterol-modified chitosan self-aggregated nanoparticles for delivery of drugs to ocular surface. Carbohydr. Polym. 2006, 65, 337-345.

49

Hermans, K.; Van Den Plas, D.; Schreurs, E.; Weyenberg, W.; Ludwig, A. Cytotoxicity and anti-inflammatory activity of Cyclosporine A loaded PLGA nanoparticles for ocular use. Pharmazie 2014, 69, 32-37.

50

Shen, J.; Deng, Y.; Jin, X.; Ping, Q.; Su, Z.; Li, L. Thiolated nanostructured lipid carriers as a potential ocular drug delivery system for Cyclosporine A: Improving in vivo ocular distribution. Int. J. Pharm. 2010, 402, 248-253.

51

Aksungur, P.; Demirbilek, M.; Denkbas, E. B.; Vandervoort, J.; Ludwig, A.; Unlu, N. Development and characterization of Cyclosporine A loaded nanoparticles for ocular drug delivery: Cellular toxicity, uptake, and kinetic studies. J. Controlled Release 2011, 151, 286-294.

52

Basaran, E.; Yenilmez, E.; Berkman, M. S.; Buyukkoroglu, G.; Yazan, Y. Chitosan nanoparticles for ocular delivery of Cyclosporine A. J. Microencapsul. 2014, 31, 49-57.

53

Dong, Y. C.; Feng, S. S. Methoxy poly(ethylene glycol)-poly(lactide) (MPEG-PLA) nanoparticles for controlled delivery of anticancer drugs. Biomaterials 2004, 25, 2843-2849.

54

Musumeci, T.; Ventura, C. A.; Giannone, I.; Ruozi, B.; Montenegro, L.; Pignatello, R.; Puglisi, G. PLA/PLGA nanoparticles for sustained release of docetaxel. Int. J. Pharm. 2006, 325, 172-179.

55

Francis, M. F.; Lavoie, L.; Winnik, F. M.; Leroux, J. -C. Solubilization of cyclosporin A in Dextran-g-polyethyleneglycolalkyl ether polymeric micelles. Eur. J. Pharm. Biopharm. 2003, 56, 337-346.

56

Aliabadi, H. M.; Mahmud, A.; Sharifabadi, A. D.; Lavasanifar, A. Micelles of methoxy poly(ethylene oxide)-b-poly(epsilon-caprolactone) as vehicles for the solubilization and controlled delivery of Cyclosporine A. J. Controlled Release 2005, 104, 301-311.

57

Velluto, D.; Demurtas, D.; Hubbell, J. A. PEG-b-PPS diblock copolymer aggregates for hydrophobic drug solubilization and release: Cyclosporin A as an example. Mol. Pharm. 2008, 5, 632-642.

58

Mondon, K.; Zeisser-Labouebe, M.; Gurny, R.; Moeller, M. Novel cyclosporin A formulations using MPEG-hexyl-substituted polylactide micelles: A suitability study. Eur. J. Pharm. Biopharm. 2011, 77, 56-65.

59

Yang, W. Q.; Gao, X. M.; Wang, B. H. Boronic acid compounds as potential pharmaceutical agents. Med. Res. Rev. 2003, 23, 346-368.

60

Toshida, H.; Nakayasu, K.; Kanai, A. Effect of cyclosporin A eyedrops on tear secretion in rabbit. Jpn. J. Ophthalmol. 1998, 42, 168-173.

61

Stern, M. E.; Gao, J. P.; Siemasko, K. F.; Beuerman, R. W.; Pflugfelder, S. C. The role of the lacrimal functional unit in the pathophysiology of dry eye. Exp. Eye Res. 2004, 78, 409-416.

62

Keklikci, U.; Soker, S. I.; Sakalar, Y. B.; Unlu, K.; Ozekinci, S.; Tunik, S. Efficacy of topical cyclosporin A 0.05% in conjunctival impression cytology specimens and clinical findings of severe vernal keratoconjunctivitis in children. Jpn. J. Ophthalmol. 2008, 52, 357-362.

File
12274_2014_547_MOESM1_ESM.pdf (1.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 03 February 2014
Revised: 21 July 2014
Accepted: 26 July 2014
Published: 11 September 2014
Issue date: February 2015

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014

Acknowledgements

Acknowledgements

The authors would like to acknowledge Erin Ellyse Bedford and Jasper G. Huang for proofreading and editing the manuscript. This work was financially supported by 20/20 Natural Sciences and Engineering Research Council–Ophthalmic Materials Network.

Return