Journal Home > Volume 7 , Issue 12

A fully flattened carbon nanotube (FNT), a graphene nanoribbon (GNR) analogue, provides a hollow space at edges for endohedral doping. Due to the unique shape of the hollow space of FNTs, novel types of low-dimensional arrangements of atoms and molecules can be obtained through endohedral doping into FNTs, which provides a new type of nanopeapods. FNT-based nanopeapods have been synthesized through endohedral doping of C60, and their structural characterization with transmission electron microscopy (TEM) performed. The doping of C60 into the inner hollow space of FNTs has been carried out via the gas-phase filling method, where open-ended FNTs are sealed in a glass ampoule and heated at 723–773 K for two days. TEM observations show that most of the encapsulated C60 molecules align as single molecular chains along the edges of FNTs and that some of the C60 forms two-dimensional close-packed structures inside FNTs.


menu
Abstract
Full text
Outline
About this article

Synthesis and TEM structural characterization of C60-flattened carbon nanotube nanopeapods

Show Author's information Qing Wang1Ryo Kitaura1( )Yuta Yamamoto2Shigeo Arai2Hisanori Shinohara1( )
Department of Chemistry & Institute for Advanced Research Nagoya UniversityNagoya 464-8602 Japan
High Voltage Electron Microscope Laboratory Ecotopia Science Institute Nagoya UniversityNagoya 464-8602 Japan

Abstract

A fully flattened carbon nanotube (FNT), a graphene nanoribbon (GNR) analogue, provides a hollow space at edges for endohedral doping. Due to the unique shape of the hollow space of FNTs, novel types of low-dimensional arrangements of atoms and molecules can be obtained through endohedral doping into FNTs, which provides a new type of nanopeapods. FNT-based nanopeapods have been synthesized through endohedral doping of C60, and their structural characterization with transmission electron microscopy (TEM) performed. The doping of C60 into the inner hollow space of FNTs has been carried out via the gas-phase filling method, where open-ended FNTs are sealed in a glass ampoule and heated at 723–773 K for two days. TEM observations show that most of the encapsulated C60 molecules align as single molecular chains along the edges of FNTs and that some of the C60 forms two-dimensional close-packed structures inside FNTs.

Keywords: electron microscopy, carbon nanotubes, nanopeapods, endohedral doping

References(18)

1

Ajayan, P. M.; Iijima, S. Capillarity-induced filling of carbon nanotubes. Nature 1993, 361, 333–334.

2

Iijima, S.; Ichihashi, T. Single-shell carbon nanotubes of 1-nm diameter. Nature 1993, 363, 603–605.

3

Kroto, H. W.; Heath, J. R.; O'Brien, S. C.; Curl, R. F.; Smalley, R. E. C60: Buckminsterfullerene. Nature 1985, 318, 162–163.

4

Smith, B. W.; Monthioux, M.; Luzzi, D. E. Encapsulated C60 in carbon nanotubes. Nature 1998, 396, 323–324.

5

Hirahara, K.; Bandow, S.; Suenaga, K.; Kato, H.; Okazaki, T.; Shinohara, H.; Iijima, S. Electron diffraction study of one-dimensional crystals of fullerenes. Phys. Rev. B 2001, 64, 115420.

6

Wang, Z. Y.; Zhao, K. K.; Li, H.; Liu, Z.; Shi, Z. J.; Liu, J.; Suenaga, K.; Joung, S. K.; Okazaki, T.; Jin, Z. X.; et al. Ultra-narrow WS2 nanoribbons encapsulated in carbon nanotubes. J. Mater. Chem. 2011, 21, 171–180.

7

Hirahra, K.; Suenaga, K.; Bandow, S.; Kato, H.; Okazaki, T.; Shinohara, H.; Iijima, S. One-dimensional metallofullerene crystal generated inside single-walled carbon nanotubes. Phys. Rev. Lett. 2000, 85, 5384–5387.

8

Kitaura, R.; Nakanishi, R.; Saito, T.; Yoshikawa, H.; Awaga, K.; Shinohara, H. High-yield synthesis of ultrathin metal nanowires in carbon nanotubes. Angew. Chem. Int. Ed. 2009, 48, 8298–8302.

9

Kitaura, R.; Imazu, N.; Kobayashi, K.; Shinohara, H. Fabrication of metal nanowires in carbon nanotubes via versatile nano-template reaction. Nano Lett. 2008, 8, 693–699.

10

Kitaura, R.; Shinohara, H. Carbon-nanotube-based hybrid materials: Nanopeapods. Chem. Asian J. 2006, 1, 646–655.

11

Lee, J.; Kim, H.; Kahng, S. J.; Kim, G.; Son, Y. W.; Ihm, J.; Kato, H.; Wang, Z. W.; Okazaki, T.; Shinohara, H.; et al. Bandgap modulation of carbon nanotubes by encapsulated metallofullerenes. Nature 2002, 415, 1005–1008.

12

Shimada, T.; Okazaki, T.; Taniguchi, R.; Sugai, T.; Shinohara, H.; Suenaga, K.; Ohno, Y.; Mizuno, S.; Kishimoto, S.; Mizutani, T. Ambipolar field-effect transistor behavior of Gd@C82 metallofullerene peapods. Appl. Phys. Lett. 2002, 81, 4067–4069.

13

Choi, D. H.; Wang, Q.; Azuma, Y.; Majima, Y.; Warner, J. H.; Miyata, Y.; Shinohara, H.; Kitaura, R. Fabrication and characterization of fully flattened carbon nanotubes: A new graphene nanoribbon analogue. Sci. Rep. 2013, 3, 1617.

14

Kim, K.; Lee, Z.; Malone, B. D.; Chan, K. T.; Alemán, B.; Regan, W.; Gannett, W.; Crommie, M. F.; Cohen, M. L.; Zettl, A. Multiply folded graphene. Phys. Rev. B 2011, 83, 245433.

15

Suenaga, K.; Sandré, E.; Colliex, C.; Pickard, C. J.; Kataura, H.; Iijima, S. Electron energy-loss spectroscopy of electron states in isolated carbon nanostructures. Phys. Rev. B 2001, 63, 165408.

16

Cowley, J. M.; Moodie, A. F. The scattering of electrons by atoms and crystals. I. A new theoretical approach. Acta Cryst. 1957, 10, 609–619.

17

Elliott, J. A.; Sandler, J. K. W.; Windle, A. H.; Young, R. J.; Shaffer, M. S. P. Collapse of single-wall carbon nanotubes is diameter dependent. Phys. Rev. Lett. 2004, 92, 095501.

18

Zhang, C. G.; Bets, K.; Lee, S. S.; Sun, Z.; Mirri, F.; Colvin, V. L.; Yakobson, B. I.; Tour, J. M.; Hauge, R. H. Closed-edged graphene nanoribbons from large-diameter collapsed nanotubes. ACS Nano 2012, 6, 6023–6032.

Publication history
Copyright
Acknowledgements

Publication history

Received: 07 April 2014
Revised: 11 July 2014
Accepted: 14 July 2014
Published: 04 September 2014
Issue date: December 2014

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014

Acknowledgements

Acknowledgements

This work has been supported by the Grant-in-Aid for Specific Area Research (Grant No. 19084008) on Carbon Nanotube Nano-Electronics and for Scientific Research S (No. 22225001) of MEXT of Japan.

Return