Journal Home > Volume 7 , Issue 12

Flexible photodetectors have become a focus of current researches because they may offer some unique applications in various new areas that require flexible, lightweight, and mechanical shock-resistive sensing elements. In this work, we designed flexible organic-inorganic hybrid photodetectors on various flexible substrates, including polyethylene terephthalate (PET), common Sellotape and polydimethylsiloxane (PDMS), with n-type phenyl-C61-butyric acid methyl ester (PCBM) and p-type pearl-like GaP nanowires (NWs) as the active materials. The as-fabricated hybrid devices exhibited an optimized performance superior to the device made of pristine GaP NWs, with a fast response time (43 ms) and high on/off ratio (~170). Under different bending conditions, the flexible hybrid photodetectors demonstrated excellent flexibility and electrical stability, which make them very promising for further large-scale, high sensitivity and high speed photodetector applications.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Flexible organic-inorganic hybrid photodetectors with n-type phenyl-C61-butyric acid methyl ester (PCBM) and p-type pearl-like GaP nanowires

Show Author's information Gui Chen§Xuming Xie§Guozhen Shen( )
State Key Laboratory for Superlattices and Microstructures Institute of Semiconductors Chinese Academy of Sciences Beijing 100083 China

§ G. Chen and X. Xie are visiting students from Huazhong University of Science and Technology. They contributed equally to this work.

Abstract

Flexible photodetectors have become a focus of current researches because they may offer some unique applications in various new areas that require flexible, lightweight, and mechanical shock-resistive sensing elements. In this work, we designed flexible organic-inorganic hybrid photodetectors on various flexible substrates, including polyethylene terephthalate (PET), common Sellotape and polydimethylsiloxane (PDMS), with n-type phenyl-C61-butyric acid methyl ester (PCBM) and p-type pearl-like GaP nanowires (NWs) as the active materials. The as-fabricated hybrid devices exhibited an optimized performance superior to the device made of pristine GaP NWs, with a fast response time (43 ms) and high on/off ratio (~170). Under different bending conditions, the flexible hybrid photodetectors demonstrated excellent flexibility and electrical stability, which make them very promising for further large-scale, high sensitivity and high speed photodetector applications.

Keywords: flexible, hybrid, nanowires, photodetectors

References(28)

1

Weiss, N. O.; Duan, X. F. Building potential for graphene photodetectors. NPG Asia Mater. 2013, 5, e74.

2

Liu, Y.; Cheng, R.; Liao, L.; Zhou, H. L.; Bai, J. W.; Liu, G.; Liu, L. X.; Huang, Y.; Duan, X. F. Plasmon resonance enhanced multicolour photodetection by graphene. Nat. Commun. 2011, 2, 579.

3

Fan, Z. Y.; Ho, J. C.; Jacobson, Z. A.; Razavi, H.; Javey, A. Large-scale, heterogeneous integration of nanowire arrays for image sensor circuitry. P. Natl. Acad. Sci. USA 2008, 105, 11066–11070.

4

Soci, C.; Zhang, A.; Xiang, B.; Dayeh, S. A.; Aplin, D. P. R.; Park, J.; Bao, X. Y.; Lo, Y. H.; Wang, D. ZnO nanowire UV photodetectors with high internal gain. Nano Lett. 2007, 7, 1003–1009.

5

Liu, Z.; Luo, T.; Liang, B.; Chen, G.; Yu, G.; Xie, X. M.; Chen, D.; Shen, G. Z. High-detective InAs nanowire photodetectors with spectral response from ultraviolet to near-infrared. Nano Res. 2013, 6, 775–783.

6

Wang, J.-J.; Hu, J.-S.; Guo, Y.-G.; Wan, L.-J. Wurtzite Cu2ZnSnSe4 nanocrystals for high-performance organic-inorganic hybrid photodetectors. NPG Asia Mater. 2012, 4, e2.

7

Xue, D.-J.; Wang, J.-J.; Wang, Y.-Q.; Xin, S.; Guo, Y.-G.; Wan, L.-J. Facile synthesis of germanium nanocrystals and their application in organic-inorganic hybrid photodetectors. Adv. Mater. 2011, 23, 3704–3707.

8

Wang, J.-J.; Wang, Y.-Q.; Cao, F.-F.; Guo, Y.-G.; Wan, L.-J. Synthesis of monodispersed wurtzite structure CuInSe2 nanocrystals and their application in high performance organic-inorganic hybrid photodetectors. J. Am. Chem. Soc. 2010, 132, 12218–12221.

9

An, T. K.; Park, C. E.; Chuang, D. S. Polymer-nanocrystal hybrid photodetectors with planar heterojunctions designed strategically to yield a high photoconductive gain. Appl. Phys. Lett. 2013, 102, 193306.

10

Wang, X. F.; Song, W. F.; Liu, B.; Chen, G.; Chen, D.; Zhou, C. W.; Shen, G. Z. High-performance organic-inorganic hybrid photodetectors based on P3HT: CdSe nanowires heterojunction on rigid and flexible substrates. Adv. Funct. Mater. 2013, 9, 1202–1209.

11

Chen, G.; Liang, B.; Liu, X.; Liu, Z.; Yu, G.; Xie, X.; Luo, T.; Chen, D.; Zhu, M. Q.; Shen, G. Z.; et al.; High-performance hybrid phenyl-C61-butyric acid methyl ester/Cd3P2 nanowire ultraviolet-visible-near infrared photodetectors. ACS Nano 2014, 8, 787–796.

12

Yoo, J.; Pyo, J.; Je, J. H. Single inorganic-organic hybrid nanowires with ambipolar photoresponse. Nanoscale, 2014, 6, 3557–3560.

13

Lin, H. W.; Liu, H. B.; Qian, X. M.; Lai, S.-W.; Li, Y. J.; Chen, N.; Ouyang, C.; Che, C.-M.; Li, Y. L. Constructing a blue light photodetector on inorganic/organic p-n heterojunction nanowire arrays. Inorg. Chem. 2011, 50, 7749–7753.

14

Dhara, S.; Giri, P. K. ZnO/anthracene based inorganic/organic nanowire heterostructure: Photoresponse and photoluminescence studies. J. Appl. Phys. 2012, 111, 044320.

15

Chen, G.; Liu, Z.; Liang, B.; Yu, G.; Xie, Z.; Huang, H. T.; Liu, B.; Wang, X. F.; Chen, D.; Zhu, M.-Q.; Shen, G. Z. Single-crystalline Zn3As2 nanowires for field-effect transistors and visible-light photodetectors on rigid and flexible substrates. Adv. Funct. Mater. 2013, 23, 2681–2690.

16

Chen, Z.-G.; Cheng, L. N.; Lu, G. Q.; Zou, J. Sulfur-doped gallium phosphide nanowires and their optoelectronic properties. Nanotechnology 2010, 21, 375701.

17

Shen, G. Z.; Chen, P.-C.; Bando, Y.; Golberg, D.; Zhou, C. W. Pearl-like ZnS-decorated InP nanowire heterostructures and their electric behaviors. Chem. Mater. 2008, 20, 6779–6783.

18

Peng, H. S.; Jain, M.; Li, Q. W.; Peterson, D. E.; Zhu, Y. T.; Jia, Q. X. Vertically aligned pearl-like carbon nanotube arrays for fiber spinning. J. Am. Chem. Soc. 2008, 130, 1130–1131.

19

Shen, G. Z.; Bando, Y.; Lee, C.-J. Synthesis and evolution of novel hollow ZnO urchins by a simple thermal evaporation process. J. Phys. Chem. B 2005, 109, 10578–10583.

20

Rafiq, M. A.; Durrani, Z. A. K.; Mizuta, H.; Colli, A.; Servati, P.; Ferrari, A. C.; Miline, W. I.; Oda, S. Room temperature single electron charging in single silicon nanochains. J. Appl. Phys. 2008, 103, 053705.

21

Szendrei, K.; Cordella, F.; Kovalenko, M. V.; Boberl, M.; Hesser, G.; Yarama, M.; Jarzab, D.; Mikhnenko, O. V.; Gocalinska, A.; Saba, M.; et al. Solution-processable near-IR photodetectors based on electron transfer from PbS nanocrystals to fullerene derivatives. Adv. Mater. 2009, 21, 683–687.

22

Liu, Z.; Chen, G.; Liang, B.; Yu, G.; Huang, H. T.; Chen, D.; Shen, G. Z. Fabrication of high-quality ZnTe nanowires toward high-performance rigid/flexible visible-light photodetectors. Opt. Exp. 2013, 21, 7799–7810.

23

Wu, P. C.; Dai, Y.; Ye, Y.; Yin, Y.; Dai, L. Fast-speed and high-gain photodetectors of individual single crystalline Zn3P2 nanowires. J. Mater. Chem. 2011, 21, 2563–2567.

24

Günes, S.; Sariciftci, N. S. Hybrid solar cells. Inorg. Chim. Acta 2008 361, 581–588.

25

Huynh, W. U.; Dittmer, J. J. Alivisatos, A. P. Hybrid nanorod-polymer solar cells. Science 2002, 295, 2425–2427.

26

Zhu, H. F.; Li, T.; Zhang, Y. J.; Dong, H. L.; Song, J. S.; Zhao, H. P.; Wei, Z. M.; Xu, W.; Hu, W. P.; Bo, Z. S. High-performance organic nanoscale photoswitches based on nanogap electrodes coated with a blend of poly(3-hexylthiophene) and [6, 6]-phenyl-C61-butyric acid methyl ester. Adv. Mater. 2010, 22, 1645–1648.

27

Taylor, T. R.; Gomez, H.; Asmis, K. R.; Neumark, D. M. Photoelectron spectroscopy of GaX2 -, Ga2X-, and Ga2X3 (X = P, As). J. Chem. Phys. 2001, 115, 4620–4631.

28

Scharber, M. C.; Muhlbacher, D.; Koppe, M.; Denk, P.; Waldauf, C.; Heeger, A. J.; Brabec, C. J. Design rules for donors in bulk-heterojunction solar cells—towards 10% energy-conversion efficiency. Adv. Mater. 2006, 18, 789–794.

File
12274_2014_537_MOESM1_ESM.pdf (1.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 08 May 2014
Revised: 02 July 2014
Accepted: 07 July 2014
Published: 25 August 2014
Issue date: December 2014

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 91123008, 61377033), and the National Basic Research Program of China (No. 2011CBA00703).

Return