Journal Home > Volume 7 , Issue 12

Direct integration of high-mobility Ⅲ–Ⅴ compound semiconductors with existing Si-based complementary metal-oxide-semiconductor (CMOS) processing platforms presents the main challenge to increasing the CMOS performance and the scaling trend. Silicon hetero-nanowires with integrated Ⅲ–Ⅴ segments are one of the most promising candidates for advanced nano-optoelectronics, as first demonstrated using molecular beam epitaxy techniques. Here we demonstrate a novel route for InAs/Si hybrid nanowire fabrication via millisecond range liquid-phase epitaxy regrowth using sequential ion beam implantation and flash-lamp annealing. We show that such highly mismatched systems can be monolithically integrated within a single nanowire. Optical and microstructural investigations confirm the high quality hetero-nanowire fabrication coupled with the formation of atomically sharp interfaces between Si and InAs segments. Such hybrid systems open new routes for future high-speed and multifunctional nanoelectronic devices on a single chip.


menu
Abstract
Full text
Outline
About this article

Ⅲ–Ⅴ semiconductor nanocrystal formation in silicon nanowires via liquid-phase epitaxy

Show Author's information Slawomir Prucnal1( )Markus Glaser2Alois Lugstein2Emmerich Bertagnolli2Michael Stöger-Pollach3Shengqiang Zhou1Manfred Helm1,4Denis Reichel1Lars Rebohle1Marcin Turek5Jerzy Zuk5Wolfgang Skorupa1
Institute of Ion Beam Physics and Materials Research Helmholtz-Zentrum Dresden-RossendorfP.O. Box 510119 Dresden 01314 Germany
Institute of Solid State Electronics Vienna University of TechnologyFloragasse 7 Vienna 1040 Austria
USTEM Vienna University of TechnologyWiedner Hauptstraße 8-10 Vienna 1040 Austria
Center for Advancing Electronics Dresden Technische Universität Dresden Dresden 01062 Germany
Maria Curie-Sklodowska UniversityPl. M. Curie-Sklodowskiej 1 Lublin 20-035 Poland

Abstract

Direct integration of high-mobility Ⅲ–Ⅴ compound semiconductors with existing Si-based complementary metal-oxide-semiconductor (CMOS) processing platforms presents the main challenge to increasing the CMOS performance and the scaling trend. Silicon hetero-nanowires with integrated Ⅲ–Ⅴ segments are one of the most promising candidates for advanced nano-optoelectronics, as first demonstrated using molecular beam epitaxy techniques. Here we demonstrate a novel route for InAs/Si hybrid nanowire fabrication via millisecond range liquid-phase epitaxy regrowth using sequential ion beam implantation and flash-lamp annealing. We show that such highly mismatched systems can be monolithically integrated within a single nanowire. Optical and microstructural investigations confirm the high quality hetero-nanowire fabrication coupled with the formation of atomically sharp interfaces between Si and InAs segments. Such hybrid systems open new routes for future high-speed and multifunctional nanoelectronic devices on a single chip.

Keywords: silicon, ion implantation, InAs, liquid phase epitaxy, hetero-nanowires

References(30)

1

Hocevar, M.; Immink, G.; Verheijen, M.; Akopian, N.; Zwiller, V.; Kouwenhoven, L.; Bakkers, E. Growth and optical properties of axial hybrid Ⅲ–Ⅴ/silicon nanowires. Nat. Commun. 2012, 3, 1266.

2

Tomioka, K.; Yoshimura, M.; Fukui, T. A Ⅲ–Ⅴ nanowire channel on silicon for high-performance vertical transistors. Nature 2012, 488, 189–192.

3

Justice, J.; Bower, Ch.; Meitl, M.; Mooney, M. B.; Gubbins, M. A.; Corbett, B. Wafer-scale integration of group Ⅲ–Ⅴ lasers on silicon using transfer printing of epitaxial layers. Nat. Photon. 2012, 6, 610–614.

4

Bessire, C. D.; Björk, M. T.; Schmid, H.; Schenk, A.; Reuter, K. B.; Riel, H.; Trap-assisted tunneling in Si-InAs nanowire heterojunction tunnel diodes. Nano Lett. 2011, 11, 4195–4199.

5

Ng, K. W.; Ko, W. S.; Tran, T. T.; Chen, R.; Nazarenko, M. V.; Lu, F.; Dubrovskii, V. G.; Kamp, M.; Forchel, A.; Chang-Hasnain, C. J. Unconventional growth mechanism for monolithic integration of Ⅲ–Ⅴ on silicon. ACS Nano 2013, 7, 100–107.

6

del Alamo, J. A. Nanometre-scale electronics with Ⅲ–Ⅴ compound semiconductors. Nature 2011, 479, 317–323.

7

Lubyshev, D.; Fastenau, J. M.; Liu, W. K. Integration of Ⅲ–Ⅴ and Si CMOS devices by molecular beam epitaxy. ECS Transactions 2009, 19, 295–308.

8

Colinge, J.-P.; Lee, Ch.-W.; Afzalian, A.; Akhavan, N. D.; Yan, R.; Ferain, I.; Razavi, P.; O'Neill, B.; Blake, A.; White, M. et al. Nanowire transistors without junctions. Nat. Nanotechnol. 2010, 5, 225–229.

9

Razavi, P.; Fagas, G. Electrical performance of Ⅲ–Ⅴ gate-all-around nanowire transistors. Appl. Phys. Lett. 2013, 103, 063506.

10

Colli, A.; Fasoli, A.; Ronning, C.; Pisana, S.; Piscanec, S.; Ferrari, A. C. Ion beam doping of silicon nanowires. Nano Lett. 2008, 8, 2188–2193.

11

Cui, Y.; Zhong, Z. H.; Wang, D. L.; Wang, W. U; Lieber, C. M. High performance silicon nanowire field effect transistors. Nano Lett. 2003, 3, 149–152.

12

Xiang, J.; Lu, W.; Hu, Y. J.; Wu, Y.; Yan, H.; Lieber, C. M. Ge/Si nanowire heterostructures as high performance field-effect transistors. Nature 2006, 441, 489–493.

13

Lu, W.; Xie, P.; Lieber, C. M. Nanowire transistor performance limits and applications. IEEE Trans. Electron Dev. 2008, 55, 2859–2876.

14

Fan, P. Y.; Chettiar, U. K.; Cao, L. Y.; Afshinmanesh, F.; Engheta, N.; Brongersma. M. L. An invisible metal-semiconductor photodetector. Nat. Photon. 2012, 6, 380–385.

15

Limbach, F.; Hauswald, C.; Lähnemann, J.; Wölz, M.; Brandt, O.; Trampert, A.; Hanke, M.; Jahn, U.; Calarco, R.; Geelhaar L. et al. Current path in light emitting diodes based on nanowire ensembles. Nanotechnology 2012, 23, 465301.

16

Xu, S.; Qin, Y.; Xu, C.; Wei, Y. G.; Yang, R. S.; Wang, Z. L. Self-powered nanowire devices. Nat. Nanotechnol. 2010, 5, 366–373.

17

Dick, K. A.; Kodambaka, S.; Reuter, M. C.; Deppert, K.; Samuelson, L.; Seifert, W.; Wallenberg, L. R.; Ross, F. M. The morphology of axial and branched nanowire heterostructures. Nano Lett. 2007, 7, 1817–1822.

18

Lauhon, L. J.; Gudiksen, M. S.; Wang, D. L.; Lieber, C. M. Epitaxial core-shell and core-multishell nanowire heterostructures. Nature 2002, 420, 57–61.

19

Prucnal, S.; Facsko, S.; Baumgart, C.; Schmidt, H.; Liedke, M. O.; Rebohle, L.; Shalimov, A.; Reuther, H.; Kanjilal, A.; Mücklich, A. et al. n-InAs nanopyramids fully integrated into silicon. Nano Lett. 2011, 11, 2814–2818.

20

Prucnal, S.; Zhou, S. Q.; Ou, X.; Reuther, H.; Liedke, M. O.; Mücklich, A.; Helm, M.; Zuk, J.; Turek, M.; Pyszniak K. et al. InP nanocrystals on silicon for optoelectronic applications. Nanotechnology 2012, 23, 485204.

21

Prucnal, S.; Zhou, S. Q.; Ou, X.; Facsko, S. Liedke, M. O.; Bregolin, F.; Liedke, B.; Grebing, J.; Fritzsche, M.; Hübner, R. et al. Ⅲ–Ⅴ/Si on silicon-on-insulator platform for hybrid nanoelectronics. J. Appl. Phys. 2014, 115, 074306.

22

Lugstein, A.; Steinmair, M.; Hyun, Y. J.; Hauer, G.; Pongratz, P.; Bertagnolli, E. Pressure-induced orientation control of the growth of epitaxial silicon nanowires. Nano Lett. 2008, 8, 2310–2314.

23

Skorupa, W.; Gebel, T.; Yankov, R. A.; Paul, S.; Lerch, W.; Downey, D. F.; Arevalo, E. A. J. Advanced thermal processing of ultrashallow implanted junctions using flash lamp annealing. J. Electrochem. Soc. 2005, 152, G436–G440.

24

Thompson, M. O.; Galvin, G. J.; Mayer, J. W.; Peercy, P. S.; Poate, J. M.; Jacobson, D. C.; Cullis, A. G.; Chew, N. G. Melting temperature and explosive crystallization of amorphous silicon during pulsed laser irradiation. Phys. Rev. Lett. 1984, 52, 2360.

25

Garandet, J. P. New Determinations of diffusion coefficients for various dopants in liquid silicon. Int. J. Thermophys. 2007, 28, 1285–1303.

26

Geiler, H.-D.; Glaser, E.; Götz, G.; Wagner, M. J. Explosive crystallization in silicon. J. Appl. Phys. 1986, 59, 3091.

27

Ohdaira, K.; Fujiwara, T.; Endo, Y.; Nishizaki, S.; Matsumura, H. Explosive crystallization of amorphous silicon films by flash lamp annealing. J. Appl. Phys. 2009, 106, 044907.

28

Smith, M.; McMahon, R. A.; Voelskow, M.; Skorupa, W. Modeling and regrowth mechanisms of flash lamp processing of SiC-on-silicon heterostructures. J. Appl. Phys. 2004, 96, 4843.

29
Martienssen, W.; Warlimont, H. Springer Handbook of Condensed Matter and Materials Data; Springer: Berlin, 2005.https://doi.org/10.1007/3-540-30437-1
DOI
30

Prucnal, S.; Turek, M.; Drozdziel, A.; Pyszniak, K.; Zhou, S. Q.; Kanjilal, A.; Skorupa, W.; Zuk, J. Formation of InAs quantum dots in silicon by sequential ion implantation and flash lamp annealing. Appl. Phys. B 2010, 101, 315–319.

Publication history
Copyright
Acknowledgements

Publication history

Received: 31 January 2014
Revised: 12 June 2014
Accepted: 03 July 2014
Published: 03 September 2014
Issue date: December 2014

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014

Acknowledgements

Acknowledgements

This work was partially supported by the Helmholtz– Gemeinschaft Deutscher Forschungszentren (No. HGF-VH-NG-713) and by the Austrian Science Fund (FWF) Project (No. I724-N16). The cleanroom facilities are provided by the Center for Micro- and Nanostructures (ZMNS) Vienna. Technical support by USTEM TU Wien is gratefully acknowledged.

Return