Journal Home > Volume 7 , Issue 12

We demonstrate that charge carrier diffusion lengths of two classes of perovskites, CH3NH3PbI3-xClx and CH3NH3PbI3, are both highly sensitive to film processing conditions and optimal processing procedures are critical to preserving the long carrier diffusion lengths of the perovskite films. This understanding, together with the improved cathode interface using bilayer-structured electron transporting interlayers of [6, 6]-phenyl-C61-butyric acid methyl ester (PCBM)/ZnO, leads to the successful fabrication of highly efficient, stable and reproducible planar heterojunction CH3NH3PbI3-xClx solar cells with impressive power-conversion efficiencies (PCEs) up to 15.9%. A 1-square-centimeter device yielding a PCE of 12.3% has been realized, demonstrating that this simple planar structure is promising for large-area devices.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

High-performance planar heterojunction perovskite solar cells: Preserving long charge carrier diffusion lengths and interfacial engineering

Show Author's information Sai Bai1,§Zhongwei Wu2,§Xiaojing Wu3Yizheng Jin1( )Ni Zhao3,4Zhihui Chen1Qingqing Mei1Xin Wang1Zhizhen Ye1Tao Song2Ruiyuan Liu2Shuit-tong Lee2Baoquan Sun2( )
State Key Laboratory of Silicon MaterialsCyrus Tang Center for Sensor Materials and ApplicationsDepartment of Materials Science and Engineeringand Center for Chemistry of High-Performance and Novel MaterialsZhejiang UniversityHangzhou310027China
Jiangsu Key Laboratory for Carbon-Based Functional Materials & DevicesInstitute of Functional Nano & Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and TechnologySoochow University199 Ren'ai RoadSuzhou215123China
Department of Electronic Engineeringthe Chinese University of Hong KongShatin, New Territories, Hong KongChina
Shenzhen Research Institutethe Chinese University of Hong KongShatin, New Territories, Hong KongChina

§ Both authors contributed equally to this work.

Abstract

We demonstrate that charge carrier diffusion lengths of two classes of perovskites, CH3NH3PbI3-xClx and CH3NH3PbI3, are both highly sensitive to film processing conditions and optimal processing procedures are critical to preserving the long carrier diffusion lengths of the perovskite films. This understanding, together with the improved cathode interface using bilayer-structured electron transporting interlayers of [6, 6]-phenyl-C61-butyric acid methyl ester (PCBM)/ZnO, leads to the successful fabrication of highly efficient, stable and reproducible planar heterojunction CH3NH3PbI3-xClx solar cells with impressive power-conversion efficiencies (PCEs) up to 15.9%. A 1-square-centimeter device yielding a PCE of 12.3% has been realized, demonstrating that this simple planar structure is promising for large-area devices.

Keywords: perovskite solar cells, planar heterojunction, charge carrier diffusion, lengths, ZnO nanocrystal films, large area devices

References(43)

1

Graetzel, M.; Janssen, R. A. J.; Mitzi, D. B.; Sargent, E. H. Materials interface engineering for solution-processed photovoltaics. Nature 2012, 488, 304–312.

2

Halls, J. J. M.; Walsh, C. A.; Greenham, N. C.; Marseglia, E. A.; Friend, R. H.; Moratti, S. C.; Holmes, A. B. Efficient photodiodes from interpenetrating polymer networks. Nature 1995, 376, 498–500.

3

Mikhnenko, O. V.; Azimi, H.; Scharber, M.; Morana, M.; Blom, P. W. M.; Loi, M. A. Exciton diffusion length in narrow bandgap polymers. Energy Environ. Sci. 2012, 5, 6960–6965.

4

Johnston, K. W.; Pattantyus-Abraham, A. G.; Clifford, J. P.; Myrskog, S. H.; Hoogland, S.; Shukla, H.; Klem, E. J. D.; Levina, L.; Sargent, E. H. Efficient Schottky-quantum-dot photovoltaics: The roles of depletion, drift, and diffusion. Appl. Phys. Lett. 2008, 92, 122111.

5

Yu, G.; Gao, J.; Hummelen, J. C.; Wudl, F.; Heeger, A. J. Polymer photovoltaic cells: Enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 1995, 270, 1789–1791.

6

O'Regan, B.; Grätzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 1991, 353, 737–740.

7

Jean, J.; Chang, S.; Brown, P. R.; Cheng, J. J.; Rekemeyer, P. H.; Bawendi, M. G.; Gradečak, S.; Bulović, V. ZnO nanowire arrays for enhanced photocurrent in PbS quantum dot solar cells. Adv. Mater. 2013, 25, 2790–2796.

8

Im, J. H.; Lee, C. R.; Lee, J. W.; Park, S. W.; Park, N. G. 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale 2011, 3, 4088–4093.

9

Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 2009, 131, 6050–6051.

10

Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith, H. J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 2012, 338, 643–647.

11

Kim, H. S.; Lee, C. R.; Im, J. H.; Lee, K. B.; Moehl, T.; Marchioro, A.; Moon, S. J.; Humphry-Baker, R.; Yum, J. H.; Moser, J. E. et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2012, 2, 591.

12

Stranks, S. D.; Eperon, G. E.; Grancini, G.; Menelaou, C.; Alcocer, M. J. P.; Leijtens, T.; Herz, L. M.; Petrozza, A.; Snaith, H. J. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 2013, 342, 341–344.

13

Xing, G.; Mathews, N.; Sun, S.; Lim, S. S.; Lam, Y. M.; Grätzel, M.; Mhaisalkar, S.; Sum, T. C. Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science 2013, 342, 344–347.

14

Burschka, J.; Pellet, N.; Moon, S. -J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M. K.; Gratzel, M. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 2013, 499, 316–319.

15

Heo, J. H.; Im, S. H.; Noh, J. H.; Mandal, T. N.; Lim, C. S.; Chang, J. A.; Lee, Y. H.; Kim, H. j.; Sarkar, A.; NazeeruddinMd, K. et al. Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nat. Photon. 2013, 7, 486–491.

16

Ball, J. M.; Lee, M. M.; Hey, A.; Snaith, H. J. Low-temperature processed meso-superstructured to thin-film perovskite solar cells. Energy Environ. Sci. 2013, 6, 1739–1743.

17

Kim, H. S.; Lee, J. W.; Yantara, N.; Boix, P. P.; Kulkarni, S. A.; Mhaisalkar, S.; Grätzel, M.; Park, N. -G. High efficiency solid-state sensitized solar cell-based on submicrometer rutile TiO2 nanorod and CH3NH3PbI3 perovskite sensitizer. Nano Lett. 2013, 13, 2412–2417.

18

Zhang, W.; Saliba, M.; Stranks, S. D.; Sun, Y.; Shi, X.; Wiesner, U.; Snaith, H. J. Enhancement of perovskite-based solar cells employing core-shell metal nanoparticles. Nano Lett. 2013, 13, 4505–4510.

19

Abrusci, A.; Stranks, S. D.; Docampo, P.; Yip, H. -L.; Jen, A. K. -Y.; Snaith, H. J. High-performance perovskite-polymer hybrid solar cells via electronic coupling with fullerene monolayers. Nano Lett. 2013, 13, 3124–3128.

20

Etgar, L.; Gao, P.; Xue, Z.; Peng, Q.; Chandiran, A. K.; Liu, B.; Nazeeruddin, M. K.; Gratzel, M. Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. J. Am. Chem. Soc. 2012, 134, 17396–17399.

21

Kumar, M. H.; Yantara, N.; Dharani, S.; Graetzel, M.; Mhaisalkar, S.; Boix, P. P.; Mathews, N. Flexible, low-temperature, solution processed ZnO-based perovskite solid state solar cells. Chem. Commun. 2013, 49, 11089–11091.

22

Wojciechowski, K.; Saliba, M.; Leijtens, T.; Abate, A.; Snaith, H. J. Sub 150 ℃ orocessed meso-superstructured perovskite solar cells with enhanced efficiency. Energy Environ. Sci. 2013, 7, 1142–1147.

23

Chen, Q.; Zhou, H.; Hong, Z.; Luo, S.; Duan, H. -S.; Wang, H. H.; Liu, Y.; Li, G.; Yang, Y. Planar heterojunction perovskite solar cells via vapor-assisted solution process. J. Am. Chem. Soc. 2014, 136, 622–625.

24

Liu, D.; Kelly, T. L. Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nat. Photon. 2014, 8, 133–138.

25

Malinkiewicz, O.; Yella, A.; Lee, Y. H.; Espallargas, G. M.; Graetzel, M.; Nazeeruddin, M. K.; Bolink, H. J. Perovskite solar cells employing organic charge-transport layers. Nat. Photon. 2014, 8, 128–132.

26

Jeng, J. -Y.; Chiang, Y. -F.; Lee, M. -H.; Peng, S. -R.; Guo, T. -F.; Chen, P.; Wen, T. -C. CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells. Adv. Mater. 2013, 25, 3727–3732.

27

Eperon, G. E.; Burlakov, V. M.; Docampo, P.; Goriely, A.; Snaith, H. J. Morphological control for high performance, solution-processed planar heterojunction perovskite solar cells. Adv. Funct. Mater. 2014, 24, 151–157.

28

You, J.; Hong, Z.; Yang, Y.; Chen, Q.; Cai, M.; Song, T. -B.; Chen, C. -C.; Lu, S.; Liu, Y.; Zhou, H. et al. Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility. ACS Nano 2014, 8, 1674–1680.

29

Sun, S.; Salim, T.; Mathews, N.; Duchamp, M.; Boothroyd, C.; Xing, G.; Sum, T. C.; Lam, Y. M. The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells. Energy Environ. Sci. 2014, 7, 399–407.

30

Docampo, P.; Ball, J. M.; Darwich, M.; Eperon, G. E.; Snaith, H. J. Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates. Nat. Commun. 2013, 4, 2761.

31

Liu, M.; Johnston, M. B.; Snaith, H. J. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 2013, 501, 395–398.

32

Conings, B.; Baeten, L.; De Dobbelaere, C.; D'Haen, J.; Manca, J.; Boyen, H. -G. Perovskite-based hybrid solar cells exceeding 10% efficiency with high reproducibility using a thin film sandwich approach. Adv. Mater. 2014, 26, 2041–2046.

33

Eperon, G. E.; Stranks, S. D.; Menelaou, C.; Johnston, M. B.; Herz, L. M.; Snaith, H. J. Formamidinium lead trihalide: A broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ. Sci. 2014, 7, 982–988.

34

Cheng, Z.; Lin, J. Layered organic-inorganic hybrid perovskites: Structure, optical properties, film preparation, patterning and templating engineering. Cryst. Eng. Comm 2010, 12, 2646–2662.

35

Noh, J. H.; Im, S. H.; Heo, J. H.; Mandal, T. N.; Seok, S. I. Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. Nano Lett. 2013, 13, 1764–1769.

36

Dualeh, A.; Tétreault, N.; Moehl, T.; Gao, P.; Nazeeruddin, M. K.; Grätzel, M. Effect of annealing temperature on film morphology of organic-inorganic hybrid pervoskite solid-state solar cells. Adv. Funct. Mater. 2014, 24, 3250–3258.

37

Snaith, H. J.; Abate, A.; Ball, J. M.; Eperon, G. E.; Leijtens, T.; Noel, N. K.; Stranks, S. D.; Wang, J. T. -W.; Wojciechowski, K.; Zhang, W. Anomalous hysteresis in perovskite solar cells. J. Phys. Chem. Lett. 2014, 5, 1511–1515.

38

Jørgensen, M.; Norrman, K.; Krebs, F. C. Stability/degradation of polymer solar cells. Sol. Energy Mater. Sol. Cells 2008, 92, 686–714.

39

Wang, M.; Xie, F.; Du, J.; Tang, Q.; Zheng, S.; Miao, Q.; Chen, J.; Zhao, N.; Xu, J. B. Degradation mechanism of organic solar cells with aluminum cathode. Sol. Energy Mater. Sol. Cells 2011, 95, 3303–3310.

40

Zhang, Q.; Wan, X.; Xing, F.; Huang, L.; Long, G.; Yi, N.; Ni, W.; Liu, Z.; Tian, J.; Chen, Y. Solution-processable graphene mesh transparent electrodes for organic solar cells. Nano Res. 2013, 6, 478–484.

41

Schwartz, D. A.; Norberg, N. S.; Nguyen, Q. P.; Parker, J. M.; Gamelin, D. R. Magnetic quantum dots: Synthesis, spectroscopy, and magnetism of Co2+- and Ni2+- doped ZnO nanocrystals. J. Am. Chem. Soc. 2003, 125, 13205–13218.

42

Yin, X.; Wang, B.; He, M.; He, T. Facile synthesis of ZnO nanocrystals via a solid state reaction for high performance plastic dye-sensitized solar cells. Nano Res. 2012, 5, 1–10.

43

Krebs, F. C.; Spanggard, H.; Kjær, T.; Biancardo, M.; Alstrup, J. Large area plastic solar cell modules. Mater. Sci. Eng. B 2007, 138, 106–111.

File
12274_2014_534_MOESM1_ESM.pdf (3.5 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 03 June 2014
Revised: 21 June 2014
Accepted: 30 June 2014
Published: 29 August 2014
Issue date: December 2014

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014

Acknowledgements

Acknowledgements

This work is financially supported by the National Basic Research Program of China (973 Program, No. 2012CB932402), the National High Technology Research and Development Program of China (No. 2011AA050520), the National Natural Science Foundation of China (Nos. 51172203, 61176057, 91123005, 61205036), the Natural Science Funds for Distinguished Young Scholars of Zhejiang Province (No. R4110189), the Public Welfare Project of Zhejiang Province (No. 2013C31057), the Theme-based Research Scheme No. T23-407/13-N from Research Grants Council of Hong Kong, and a Shun Hing Institute of Advanced Engineering Grant (No. 8115041) from the Chinese University of Hong Kong. We thank Prof. Xiaogang Peng's group (Chemistry Department, Zhejiang University, China) for assistance with the TCSPC measurements.

Return