Journal Home > Volume 7 , Issue 12

In this study, for the first time, polymeric precursors have been used in the preparation of yolk-shell powders using a large-scale spray drying process. An esterification reaction between the carboxyl group of citric acid and the hydroxyl group of ethylene glycol inside the droplet produced organic polymers during the drying process of the droplet. During the spray drying process, the polymeric precursors enabled the formation of multi-shell cobalt oxide yolk-shell powders with superior electrochemical properties. The maximum number of shells of the particles in the yolk-shell powders post-treated at 300, 400, and 500 ℃ were six, five, and four, respectively. The initial discharge capacities of the cobalt oxide yolk-shell powders post-treated at 300, 400, and 500 ℃ were 1, 188, 1, 331, and 1, 110 mAh·g-1, and their initial charge capacities were 868, 1, 005, and 798 mAh·g-1, respectively. The discharge capacities of the powders post-treated at 300, 400, and 500 ℃ after 100 cycles were 815, 958, and 670 mAh·g-1, respectively, and their corresponding capacity retentions measured after the first cycles were 92%, 93%, and 82%, respectively. The pure phase Co3O4 yolk-shell powders post-treated at 400 ℃ had low charge transfer resistance and high lithium-ion diffusion rate.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Effect of esterification reaction of citric acid and ethylene glycol on the formation of multi-shelled cobalt oxide powders with superior electrochemical properties

Show Author's information Gi Dae Park1Jong-Heun Lee1Jung-Kul Lee2( )Yun Chan Kang1( )
Department of Materials Science and Engineering Korea University Anam-Dong Seongbuk-Gu Seoul 136-713 Republic of Korea
Department of Chemical Engineering Konkuk University 1 Hwayang-dong Gwangjin-gu Seoul 143-701 Republic of Korea

Abstract

In this study, for the first time, polymeric precursors have been used in the preparation of yolk-shell powders using a large-scale spray drying process. An esterification reaction between the carboxyl group of citric acid and the hydroxyl group of ethylene glycol inside the droplet produced organic polymers during the drying process of the droplet. During the spray drying process, the polymeric precursors enabled the formation of multi-shell cobalt oxide yolk-shell powders with superior electrochemical properties. The maximum number of shells of the particles in the yolk-shell powders post-treated at 300, 400, and 500 ℃ were six, five, and four, respectively. The initial discharge capacities of the cobalt oxide yolk-shell powders post-treated at 300, 400, and 500 ℃ were 1, 188, 1, 331, and 1, 110 mAh·g-1, and their initial charge capacities were 868, 1, 005, and 798 mAh·g-1, respectively. The discharge capacities of the powders post-treated at 300, 400, and 500 ℃ after 100 cycles were 815, 958, and 670 mAh·g-1, respectively, and their corresponding capacity retentions measured after the first cycles were 92%, 93%, and 82%, respectively. The pure phase Co3O4 yolk-shell powders post-treated at 400 ℃ had low charge transfer resistance and high lithium-ion diffusion rate.

Keywords: energy storage, synthesis design, spray drying, lithium battery, yolk-shell

References(54)

1

Wang, X.; Wu, X. L.; Guo, Y. G.; Zhong, Y.; Cao, X.; Ma, Y.; Yao, J. Synthesis and lithium storage properties of Co3O4 nanosheet-assembled multishelled hollow spheres. Adv. Funct. Mater. 2010, 20, 1680–1686.

2

Xu, S.; Hessel, C. M.; Ren, H.; Yu, R.; Jin, Q.; Yang, M.; Zhao, H.; Wang, D. α-Fe2O3 multi-shelled hollow microspheres for lithium ion battery anodes with superior capacity and charge retention. Energy Environ. Sci. 2014, 7, 632–637.

3

Liu, J.; Hartono, S. B.; Jin, Y. G.; Li, Z.; Lu, G. Q.; Qiao, S. Z. A facile vesicle template route to multi-shelled mesoporous silica hollow nanospheres. J. Mater. Chem. 2010, 20, 4595–4601.

4

Sun, Z.; Xie, K. P.; Li, Z. A.; Sinev, I.; Ebbinghaus, P.; Erbe, A.; Farle, M.; Schuhmann, W. G.; Muhler, M.; Ventosa, E. Hollow and yolk-shell iron oxide nanostructures on few-layer graphene in Li-ion batteries. Chem. Eur. J. 2014, 20, 2022–2030.

5

Tartaj, P.; Amarilla, J. M. Porous inorganic nanostructures with colloidal dimensions: Synthesis and applications in electrochemical energy devices. Chem. Commun. 2014, 50, 2077–2088.

6

Yao, Y.; Liu, H. C.; Li, G.; Peng, H.; Chen, K. Multi-shelled porous LiNi0.5Mn1.5O4 microspheres as a 5 V cathode material for lithium-ion batteries. Mater. Chem. Phys. 2014, 143, 867–872.

7

Ru, Y.; Evans, D. G.; Zhu, H.; Yang, W. S. Facile fabrication of yolk-shell structured porous Si-C microspheres as effective anode materials for Li-ion batteries. RSC Adv. 2014, 4, 71–75.

8

Xie, Q. S.; Zhang, X. Q.; Wu, X. B.; Wu, H.; Liu, X.; Yue, G.; Yang, Y.; Peng, D. L. Yolk-shell ZnO-C microspheres with enhanced electrochemical performance as anode material for lithium ion batteries. Electrochim. Acta 2014, 125, 659–665.

9

Lai, X. Y.; Li, J.; Korgel, B. A.; Dong, Z. H.; Li, Z. M.; Su, F.; Du, J.; Wang, D. General synthesis and gas-sensing properties of multiple-shell metal oxide hollow microspheres. Angew. Chem. Int. Ed. 2011, 123, 2790–2793.

10

Dong, Z. H.; Lai, X. Y.; Halpert, J. E.; Yang, N.; Yi, L.; Zhai, J.; Wang, D.; Tang, Z.; Jiang, L. Accurate control of multishelled ZnO hollow microspheres for dye-sensitized solar cells with high efficiency. Adv. Mater. 2012, 24, 1046–1049.

11

Wang, J.; Yang, N.; Tang, H.; Dong, Z. H.; Jin, Q.; Yang, M.; Kisailus, D.; Zhao, H. J.; Tang, Z. Y.; Wang, D. Accurate control of multishelled Co3O4 hollow microspheres as high-performance anode materials in lithium-ion batteries. Angew. Chem. Int. Ed. 2013, 52, 6417–6420.

12

Dong, Z. H.; Ren, H.; Hessel, C. M.; Wang, J. Y.; Yu, R. B.; Jin, Q.; Yang, M.; Hu, Z. D.; Chen, Y. F.; Tang, Z. Y. et al. Quintuple-shelled SnO2 hollow microspheres with superior light scattering for high-performance dye-sensitized solar cells. Adv. Mater. 2014, 26, 905–909.

13

Li, Z. M.; Lai, X. Y.; Wang, H.; Mao, D.; Xing, C. J.; Wang, D. General synthesis of homogeneous hollow core-shell ferrite microspheres. J. Phys. Chem. C 2009, 113, 2792–2797.

14

Hong, Y. J.; Son, M. Y.; Kang, Y. C. One-pot facile synthesis of double-shelled SnO2 yolk-shell-structured powders by continuous process as anode materials for Li-ion batteries. Adv. Mater. 2013, 25, 2279–2283.

15

Ko, Y. N.; Kang, Y. C.; Park, S. B. A new strategy for synthesizing yolk-shell V2O5 powders with low melting temperature for high performance Li-ion batteries. Nanoscale 2013, 5, 8899–8903.

16

Choi, S. H.; Kang, Y. C. Ultrafast synthesis of yolk-shell and cubic NiO nanopowders and application in lithium ion batteries. ACS Appl. Mater. Interfaces 2014, 26, 2312–2316.

17

Choi, S. H.; Kang, Y. C. Synthesis of yolk-shell-structured metal sulfide powders with excellent electrochemical performances for lithium-ion batteries. Small 2014, 10, 474–478.

18

Choi, S. H.; Kang, Y. C. Using simple spray pyrolysis to prepare yolk-shell-structured ZnO-Mn3O4 systems with the optimum composition for superior electrochemical properties. Chem. Eur. J. 2014, 20, 3014–3018.

19

Zhou, L.; Xu, H. Y.; Zhang, H. W.; Yang, J.; Hartono, S. B.; Qian, K.; Zou, J.; Yu, C. Z. Cheap and scalable synthesis of α-Fe2O3 multi-shelled hollow spheres as high-performance anode materials for lithium ion batteries. Chem. Commun. 2013, 49, 8695–8697.

20

Choi, S. H.; Kang, Y. C. Kilogram-scale production of SnO2 yolk-shell powders by a spray-drying process using dextrin as carbon source and drying additive. Chem. Eur. J. 2014, 20, 5835–5839.

21

Son, M. Y.; Kim, J. H.; Kang, Y. C. Study of Co3O4 mesoporous nanosheets prepared by a simple spray-drying process and their electrochemical properties as anode material for lithium secondary batteries. Electrochim. Acta 2014, 116, 44–50.

22

Chen, J. S.; Zhu, T.; Hu, Q. H.; Gao, J. J.; Su, F.; Qiao, S. Z.; Lou, X. W. Shape-controlled synthesis of cobalt-based nanocubes, nanodiscs, and nanoflowers and their comparative lithium-storage properties. ACS Appl. Mater. Interfaces 2010, 2, 3628–3625.

23

Zhan, L.; Wang, S.; Ding, L. X.; Li, Z.; Wang, H. Grass-like Co3O4 nanowire arrays anode with high rate capability and excellent cycling stability for lithium-ion batteries. Electrochim. Acta 2014, 135, 35–41.

24

Xiong, S. L.; Chen, J. S.; Lou, X. W.; Zeng, H. C. Mesoporous Co3O4 and CoO@C topotactically transformed from chrysanthemum-like Co(CO3)0.5(OH)·0.11H2O and their lithium-storage properties. Adv. Funct. Mater. 2012, 22, 861–871.

25

Wang, Y.; Zhang, H. J.; Lu, L.; Stubbs, L. P.; Wong, C. C.; Lin, J. Designed functional systems from peapod-like Co@carbon to Co3O4@carbon nanocomposites. ACS Nano 2010, 4, 4753–4761.

26

Cheng, H.; Lu, Z. G.; Deng, J. Q.; Chung, C. Y.; Li, Y. Y. A facile method to improve the high rate capability of Co3O4 nanowire array electrodes. Nano Res. 2010, 3, 895–901.

27

Zhang, M.; Uchaker, E.; Hu, S.; Zhang, Q.; Wang, T.; Cao, G. Z.; Li, J. CoO-carbon nanofiber networks prepared by electrospinning as binder-free anode materials for lithiumion batteries with enhanced properties. Nanoscale 2013, 5, 12342–12349.

28

Son, M. Y.; Hong, Y. J.; Kang, Y. C. Superior electrochemical properties of Co3O4 yolk-shell powders with a filled core and multishells prepared by a one-pot spray pyrolysis. Chem. Commun. 2013, 49, 5678–5680.

29

Zhang, M.; Yan, F.; Tang, X.; Li, Q. H.; Wang, T. H.; Cao, G. Z. Flexible CoO-graphene-carbon nanofiber mats as binder-free anodes for lithium-ion batteries with superior rate capacity and cyclic stability. J. Mater. Chem. A 2014, 2, 5890–5897.

30

Peng, C. X.; Chen, B. D.; Qin, Y.; Yang, S.; Li, C. Z.; Zuo, Y. H.; Liu. S. Y.; Yang, J. H. Facile ultrasonic synthesis of CoO quantum dot/graphene nanosheet composites with high Lithium storage capacity. ACS Nano 2012, 6, 1074–1081.

31

Yang, S. B.; Cui, G. L.; Pang, S. P.; Cao, Q.; Kolb, U.; Feng, X. L.; Maier, J.; Mullen, K. Fabrication of cobalt and cobalt oxide/graphene composites: Towards high-performance anode materials for Lithium ion batteries. ChemSusChem 2010, 3, 236–239.

32

He, X. F.; Wu, Y.; Zhao, F.; Wang, J. P.; Jiang, K.; Fan, S. Enhanced rate capabilities of Co3O4/carbon nanotube anodes for lithium ion battery applications. J. Mater. Chem. A 2013, 1, 11121–11125.

33

Chen, C. H.; Hwang, B. J.; Do, J. S.; Weng, J. H.; Venkateswarlu, M.; Cheng, M. Y.; Santhanam, R.; Ragavendran, K.; Lee, J. F.; Chen, J. M. et al. An understanding of anomalous capacity of nano-sized CoO anode materials for advanced Li-ion battery. Electrochem. Commun. 2010, 12, 496–498.

34

Jayaprakash, N.; Jones, W. D.; Moganty, S. S.; Archer, L. A. Composite lithium battery anodes based on carbon@Co3O4 nanostructures: Synthesis and characterization. J. Power Sources 2012, 200, 53–58.

35

Lou, X. W.; Deng, D.; Lee, J. Y.; Archer, L. A. Thermal formation of mesoporous single-crystal Co3O4 nano-needles and their lithium storage properties. J. Mater. Chem. 2008, 18, 4397–4401.

36

Huang, G. Y.; Xu, S. M.; Lu, S.; Li, L. Y.; Sun, H. Micro-/ nanostructured Co3O4 anode with enhanced rate capability for lithium-ion batteries. ACS Appl. Mater. Interfaces 2014, 6, 7236–7243.

37

Huang, X. L.; Wang, R. Z.; Xu, D.; Wang, Z. L.; Wang, H. G.; Xu, J. J.; Wu, Z.; Liu, Q. C.; Zhang, Y.; Zhang, X. B. Homogeneous CoO on graphene for binder-free and ultralong-life lithium ion batteries. Adv. Funct. Mater. 2013, 23, 4345–4353.

38

Kim, J. H.; Kang, Y. C. Electrochemical properties of micron-sized, spherical, meso- and macro-porous Co3O4 and CoO-carbon composite powders prepared by two-step spray drying process. Nanoscale 2014, 6, 4789–4795.

39

Zhanga, P.; Guo, Z. P.; Huang, Y.; Jia, D.; Liu, H. K. Synthesis of Co3O4/carbon composite nanowires and their electrochemical properties. J. Power Sources 2011, 196, 6987–6991.

40

Rai, A. K.; Gim, J. H.; Anh, L. T.; Kim, J. K. Partially reduced CO3O4/graphene nanocomposite as an anode material for secondary lithium ion battery. Electrochim. Acta 2013, 100, 63–71.

41

Ju, S. H.; Kang, Y. C. The characteristics of Ni-Co-Mn-O precursor and Li(Ni1/3Co1/3Mn1/3)O2 cathode powders prepared by spray pyrolysis. Ceram. Inter. 2009, 35, 1205–1210.

42

Ju, S. H.; Kang, Y. C. Effects of types of drying control chemical additives on the morphologies and electrochemical properties of Li4Ti5O12 anode powders prepared by spray pyrolysis. J. Alloys Compd. 2010, 506, 913–916.

43

Li, X.; Agarwal, V.; Liu, M.; Rees, W. S. Investigation of the mechanism of sol-gel formation in the Sr(NO3)2/citric acid/ethylene glycol system by solution state 87Sr nuclear magnetic resonance spectroscopy. J. Mater. Res. 2000, 15, 2393–2399.

44

Koo, H. Y.; Ju, S. H.; Hong, S. K.; Jung, D. S.; Kang, Y. C.; Jung, K. Y. Effect of boric acid flux and drying control chemical additive on the characteristics of Y2O3: Eu phosphor particles prepared by spray pyrolysis. Jpn. J. Appl. Phys. 2006, 45, 9083–9087.

45

Jung, D. S.; Hong, S. K.; Lee, H. J.; Kang, Y. C. Gd2O3: Eu phosphor particles prepared from spray solution containing boric acid flux and polymeric precursor by spray pyrolysis. Optic. Mater. 2006, 28, 530–535.

46

Koo, H. Y.; Ju, S. H.; Jung, D. S.; Hong, S. K.; Kim, D. Y.; Kang, Y. C. Morphology control of Gd2O3: Eu phosphor particles with cubic and monoclinic phases prepared by high-temperature spray pyrolysis. Jpn. J. Appl. Phys. 2006, 45, 5018–5022.

47

Kang, Y. C.; Roh, H. S.; Park, S. B.; Jung, K. Y. Red-emitting phosphor particles with spherical shape, dense morphology, and high luminescent efficiency under ultraviolet. Jpn. J. Appl. Phys. 2004, 43, 5302–5306.

48

Bujans, F. B.; Martinez, R.; Ortiz, P. Structural characterization of oligomers from the polycondensation of citric acid with ethylene glycol and long-chain aliphatic alcohols. J. Appl. Poly. Sci. 2003, 88, 302–306.

49

Ko, Y. N.; Park, S. B.; Jung, K. Y.; Kang, Y. C. One-pot facile synthesis of ant-cave-structured metal oxide-carbon microballs by continuous process for use as anode materials in Li-ion batteries. Nano Lett. 2013, 13, 5462–5466.

50

Li, G.; Xu, L.; Hao, Q.; Wang, M.; Qian, Y. Synthesis, characterization and application of carbon nanocages as anode materials for high-performance lithium-ion batteries. RSC Adv. 2012, 2, 284–291.

51

Du, X. Y.; He, W.; Zhang, X. D.; Yue, Y. Z.; Liu, H.; Zhang, X. G.; Min, D. D.; Ge, X.; Du, Y. Enhancing the electrochemical performance of lithium ion batteries using mesoporous Li3V2(PO4)3/C microspheres. J. Mater. Chem. 2012, 22, 5960–5969.

52

Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J. M. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 2000, 407, 496–499.

53

Courtel, F. M.; Duncan, H.; Abu-Lebdeh, Y.; Davidson, I. J. High capacity anode materials for Li-ion batteries based on spinel metal oxides AMn2O4 (A = Co, Ni, and Zn). J. Mater. Chem. 2011, 21, 10206–10218.

54

Xu, X.; Rout, C. S.; Yang, J.; Cao, R.; Oh, P.; Shin, H. S.; Cho, J. P. Freeze-dried WS2 composites with low content of graphene as high-rate lithium storage materials. J. Mater. Chem. A 2013, 1, 14548–14554.

File
12274_2014_533_MOESM1_ESM.pdf (4.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 13 May 2014
Revised: 27 June 2014
Accepted: 30 June 2014
Published: 03 September 2014
Issue date: December 2014

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014

Acknowledgements

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (No. 2012R1A2A2A02046367). This work was also supported by the Energy Efficiency & Resources Core Technology Program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP), granted financial resources from the Ministry of Trade, Industry & Energy, Republic of Korea (No. 201320200000420).

Return