Journal Home > Volume 7 , Issue 12

We have calculated the longitudinal acoustic phonon limited electron mobility of 14 two-dimensional semiconductors with composition of MX2, where M (= Mo, W, Sn, Hf, Zr and Pt) is the transition metal, and X is S, Se and Te. We treated the scattering matrix by the deformation potential approximation. We found that out of 14 compounds, MoTe2, HfSe2 and ZrSe2 are promising regarding to their possible high mobility and finite band gap. The phonon limited mobility can be above 2, 500 cm2·V-1·s-1 at room temperature.


menu
Abstract
Full text
Outline
About this article

Two-dimensional semiconductors with possible high room temperature mobility

Show Author's information Wenxu Zhang( )Zhishuo HuangWanli ZhangYanrong Li
State Key Laboratory of Electronic Thin Films and Integrated DevicesUniversity of Electronic and Technology of ChinaChengdu610054China

Abstract

We have calculated the longitudinal acoustic phonon limited electron mobility of 14 two-dimensional semiconductors with composition of MX2, where M (= Mo, W, Sn, Hf, Zr and Pt) is the transition metal, and X is S, Se and Te. We treated the scattering matrix by the deformation potential approximation. We found that out of 14 compounds, MoTe2, HfSe2 and ZrSe2 are promising regarding to their possible high mobility and finite band gap. The phonon limited mobility can be above 2, 500 cm2·V-1·s-1 at room temperature.

Keywords: two-dimensional (2D) materials, electron mobility, acoustic phonon, ab initio

References(21)

1

Xu, M. S.; Liang, T.; Shi, M. M.; Chen, H. Z. Graphene-like two-dimensional materials. Chem. Rev. 2013, 113, 3766–3798.

2

Das Sarma, S.; Adam, S.; Hwang, E. H.; Ross, E. Electronic transport in two-dimensional graphene. Rev. Mod. Phys. 2011, 83, 407.

3

Liao, L.; Lin, Y. C.; Bao, M. Q.; Cheng, R.; Bai, J. W.; Liu, Y.; Qu, Y. Q.; Wang, K. L.; Huang, Y.; Duan, X. F. High-speed graphene transistors with a self-aligned nanowire gate. Nature 2010, 467, 305–308.

4

Liu, H.; Neal, A. T.; Ye, P. D. Channel length scaling of MoS2 MOSFETs. ACS Nano 2012, 6, 8563–8569.

5

Castro, E. V.; Novoselov, K. S.; Morozov, S. V.; Peres, N. M. R.; Lopes dos Santos, J. M. B.; Nilsson, J.; Guinea, F.; Geim, A. K.; Castro Neto, A. H. Biased bilayer graphene: Semiconductor with a gap tunable by the electric field effect. Phys. Rev. Lett. 2007, 99, 216802.

6

Radisavljevic, B.; Kis, A. Mobility engineering and a metal-insulator transition in monolayer MoS2. Nat. Mater. 2013, 12, 815–820.

7

Popov, I.; Seifert, G.; Tománek. D. Designing electrical contacts to MoS2 monolayers: A computational study. Phys. Rev. Lett. 2012, 108, 156802.

8

Kaasbjerg, K.; Thygesen, K. S.; Jacobsen, K. W. Phonon-limited mobility in n-type single layer MoS2 from first principles. Phys. Rev. B 2012, 85, 115317.

9

Li, X. D.; Mullen, J. T.; Jin, Z.; Borysenko, K. M.; Nardelli, M. B.; Kim, K.W. Intrinsic electrical transport properties of monolayer silicene and MoS2 from first principles. Phys. Rev. B 2013, 87, 115418.

10

Kaasbjerg, K.; Thygesen, K. S.; Jauho, A. P. Acoustic phonon limited mobility in twodimensional semiconductors: Deformation potential and piezoelectric scattering in monolayer MoS2 from first principles. Phys. Rev. B 2013, 87, 235312.

11

Yoon, Y.; Ganapathi, K.; Salahuddin, S. How good can monolayer MoS2 transistors be? Nano Lett. 2011, 11, 3768–3773.

12

Ataca, C.; Sahin, H.; Ciraci, S. Stable, single-layer MX2 transition-metal oxides and dichalcogenides in a honeycomb-like structure. J. Phys. Chem. C 2012, 116, 8983–8999.

13

Lebègue, S.; Björkman, T.; Klintenberg, M.; Nieminen, R. M.; Eriksson, O. Two-dimensional materials from data filtering and ab initio calculations. Phys. Rev. X 2013, 3, 031002.

14

Koepernik, K.; Eschrig, H. Full-potential nonorthogonal local-orbital minimum-basis band structure scheme. Phys. Rev. B 1999, 59, 1743.

15

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865.

16

Bardeen, J.; Shockey, W. Deformation potentials and mobilities in non-polar crystals. Phys. Rev. 1950, 80, 72.

17

Takagi, S. I.; Hoyt, J. L.; Welser, J. J.; Gibbons, J. F. Comparative study of phonon limited mobility of two dimensional electrons in strained and unstrained Si metal oxide semiconductor field effect transistors. J. Appl. Phys. 1996, 80, 1567.

18

Bruzzone, S.; Fiori, G. Ab-initio simulations of deformation potentials and electron mobility in chemically modified graphene and two-dimensional hexagonal boron-nitride. Appl. Phys. Lett. 2011, 99, 222108.

19

Giannozzi, P.; Baroni, S.; Bonini, N.; Clandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G. L.; Cococcioni, M.; Dabo, I. et al. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys: Cond. Matt. 2009, 21, 395502.

20

Fang, H.; Tosun, M.; Seol, G.; Chang, T. C.; Takei, K.; Guo, J.; Javey, A. Degenerate n-doping of few-layer transition metal dichalcogenides by potassium. Nano Lett. 2013, 13, 1991–1995.

21

Dolui, K.; Rungger, I.; Pemmaraju, C. D.; Sanvito, S. Possible doping strategies for MoS2 monolayers: An ab initio study. Phys. Rev. B 2013, 88, 075420.

Publication history
Copyright
Acknowledgements

Publication history

Received: 16 April 2014
Revised: 29 June 2014
Accepted: 30 June 2014
Published: 03 September 2014
Issue date: December 2014

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014

Acknowledgements

Acknowledgements

Financial support from the International Science & Technology Cooperation Program of China (No. 2012DFA51430), the Research Grant of Chinese Central Universities (No. ZYGX2013Z001) and Sichuan Youth Science and Technology Innovation Research Team Funding (No. 2011JTD0006) are acknowledged.

Return