Journal Home > Volume 7 , Issue 11

In this study, we reported the design, fabrication, and characterization of wellordered arrays of vertically-aligned, epitaxial NiSi2/Si heterostructures and single-crystalline NiSi2 nanowires on (001)Si substrates. The epitaxial NiSi2 with {111} facets was found to be the first and the only silicide phase formed inside the Si nanowires after annealing at a temperature as low as 300 ℃. Upon annealing at 500 ℃ for 4 h, the residual parts of Si nanowires were completely consumed and the NiSi2/Si heterostructured nanowires were transformed to fully silicided NiSi2 nanowires. XRD, TEM and SAED analyses indicated that all the NiSi2 nanowires were single crystalline and their axial orientations were parallel to the [001] direction. The obtained vertically-aligned NiSi2 nanowires, owing to their well-ordered arrangement, single-crystalline structure, and low effective work function, exhibit excellent field-emission properties with a very low turn-on field of 1.1 V/m. The surface wettability of the nanowires was found to switch from hydrophobic to hydrophilic after the formation of NiSi2 phase and the measured water contact angle decreased with increasing extent of Ni silicidation. The increased hydrophilicity can be explained by the Wenzel model. The obtained results present the exciting prospect that the new approach proposed here will provide the capability to fabricate other highly-ordered, vertically-aligned fully silicided nanowire arrays and may offer potential applications in constructing vertical silicide-based nanodevices.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Fabrication and properties of well-ordered arrays of single-crystalline NiSi2 nanowires and epitaxial NiSi2/Si heterostructures

Show Author's information Chenfu ChuangShaoliang Cheng( )
Department of Chemical and Materials EngineeringCentral University, Chung-Li CityTaoyuan32001

Abstract

In this study, we reported the design, fabrication, and characterization of wellordered arrays of vertically-aligned, epitaxial NiSi2/Si heterostructures and single-crystalline NiSi2 nanowires on (001)Si substrates. The epitaxial NiSi2 with {111} facets was found to be the first and the only silicide phase formed inside the Si nanowires after annealing at a temperature as low as 300 ℃. Upon annealing at 500 ℃ for 4 h, the residual parts of Si nanowires were completely consumed and the NiSi2/Si heterostructured nanowires were transformed to fully silicided NiSi2 nanowires. XRD, TEM and SAED analyses indicated that all the NiSi2 nanowires were single crystalline and their axial orientations were parallel to the [001] direction. The obtained vertically-aligned NiSi2 nanowires, owing to their well-ordered arrangement, single-crystalline structure, and low effective work function, exhibit excellent field-emission properties with a very low turn-on field of 1.1 V/m. The surface wettability of the nanowires was found to switch from hydrophobic to hydrophilic after the formation of NiSi2 phase and the measured water contact angle decreased with increasing extent of Ni silicidation. The increased hydrophilicity can be explained by the Wenzel model. The obtained results present the exciting prospect that the new approach proposed here will provide the capability to fabricate other highly-ordered, vertically-aligned fully silicided nanowire arrays and may offer potential applications in constructing vertical silicide-based nanodevices.

Keywords: wettability, nanosphere lithography, Si nanowire, field emission, NiSi2 nanowire

References(54)

1

Xiao, Q. F.; Cai, M.; Balogh, M. P.; Tessema, M. M.; Lu, Y. F. Symmetric growth of Pt ultrathin nanowires from dumbbell nuclei for use as oxygen reduction catalysts. Nano Res. 2012, 5, 145–151.

2

Liang, W. J.; Rabin, O.; Hochbaum, A. I.; Fardy, M.; Zhang, M. J.; Yang, P. D. Thermoelectric properties of p-type PbSe nanowires. Nano Res. 2009, 2, 394–399.

3

Chen, S. Y.; Yeh, P. H.; Wu, W. W.; Chen, U. S.; Chueh, Y. L.; Yang, Y. C.; Gwo, S.; Chen, L. J. Low resistivity metal silicide nanowires with extraordinarily high aspect ratio for future nanoelectronic devices. ACS Nano 2011, 5, 9202–9207.

4

Kohandehghan, A.; Kalisvaart, P.; Kupsta, M.; Zahiri, B.; Amirkhiz, B. S.; Li, Z. P.; Memarzadeh, E. L.; Bendersky, L. A.; Mitlin, D. Magnesium and magnesium-silicide coated silicon nanowire composite anodes for lithium-ion batteries. J. Mater. Chem. A 2013, 1, 1600–1612.

5

Lin, Y. C.; Lu, K. C.; Wu, W. W.; Bai, J. W.; Chen, L. J.; Tu, K. N.; Huang, Y. Single crystalline PtSi nanowires, PtSi/Si/PtSi nanowire heterostructures, and nanodevices. Nano Lett. 2008, 8, 913–918.

6

Wu, Y.; Xiang, J.; Yang, C.; Lu, W.; Lieber, C. M. Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures. Nature 2004, 430, 61–65.

7

Dasgupta, N. P.; Xu, S. C.; Jung, H. J.; Iancu, A.; Fasching, R.; Sinclair, R.; Prinz, F. B. Nickel silicide nanowire arrays for anti-reflective electrodes in photovoltaics. Adv. Funct. Mater. 2012, 22, 3650–3657.

8

Schmitt, A. L.; Higgins, J. M.; Szczech, J. R.; Jin, S. Synthesis and applications of metal silicide nanowires. J. Mater. Chem. 2010, 20, 223–235.

9

Kim, J.; Anderson, W. A. Direct electrical measurement of the self-assembled nickel silicide nanowire. Nano Lett. 2006, 6, 1356–1359.

10

Yuan, F. W.; Wang, C. Y.; Li, G. A; Chang, S. H.; Chu, L. W.; Chen, L. J.; Tuan, H. Y. Solution-phase synthesis of single-crystal Cu3Si nanowire arrays on diverse substrates with dual functions as high-performance field emitters and efficient anti-reflective layers. Nanoscale 2013, 5, 9875–9881.

11

Valentín, L. A.; Carpena-Nuñez, J.; Yang, D.; Fonseca, L. F. Field emission properties of single crystal chromium disilicide nanowires. J. Appl. Phys. 2013, 113, 014308.

12

Chen, S. Y.; Chen, L. J. Self-assembled epitaxial NiSi2 nanowires on Si(001) by reactive deposition epitaxy. Thin Solid Films 2006, 508, 222–225.

13

Liang, S.; Islam, R.; Smith, D. J.; Bennett, P. A. Phase transformation in FeSi2 nanowires. J. Cryst. Growth 2006, 295, 166–171.

14

He, Z. A.; Stevens, M.; Smith, D. J.; Bennett, P. A. Epitaxial titanium silicide islands and nanowires. Surf. Sci. 2003, 524, 148–156.

15

Kim, D. J.; Seol, J. K.; Lee, M. R.; Hyung, J. H.; Kim, G. S.; Ohgai, T.; Lee, S. K. Ferromagnetic nickel silicide nanowires for isolating primary CD4+ T lymphocytes. Appl. Phys. Lett. 2012, 100, 163703–163706.

16

Liu, B. Z.; Wang, Y. F.; Dilts, S.; Mayer, T. S.; Mohney, S. E. Silicidation of silicon nanowires by platinum. Nano Lett. 2007, 7, 818–824.

17

Szczech, J. R.; Schmitt, A. L.; Bierman, M. J.; Jin, S. Single-crystal semiconducting chromium disilicide nanowires synthesized via chemical vapor transport. Chem. Mater. 2007, 19, 3238–3243.

18

Szczech, J. R.; Jin, S. Epitaxially-hyperbranched FeSi nanowires exhibiting merohedral twinning. J. Mater. Chem. 2010, 20, 1375–1382.

19

Song, Y. P.; Schmitt, A. L.; Jin, S. Ultralong single-crystal metallic Ni2Si nanowires with low resistivity. Nano Lett. 2007, 7, 965–969.

20

Gao, Y.; Zhou, Y. S.; Qian, M.; Xie, Z. Q.; Xiong, W.; Luo, H. F.; Jiang, L.; Lu, Y. F. Fast growth of branched nickel monosilicide nanowires by laser-assisted chemical vapor deposition. Nanotechnology 2011, 22, 235602–235606.

21

Fan, X.; Zhang, H.; Du, N.; Yang, D. R. Phase-controlled synthesis of nickel silicide nanostructures. Mater. Res. Bull. 2012, 47, 3797–3803.

22

Kim, J.; Shin, D. H.; Lee, E. S.; Han, C. S.; Park, Y. C. Electrical characteristics of single and doubly connected Ni silicide nanowire grown by plasma-enhanced chemical vapor deposition. Appl. Phys. Lett. 2007, 90, 253103.

23

Liu, C. Y.; Li, W. S.; Chu, L. W.; Lu, M. Y.; Tsai, C. J.; Chen, L. J. An ordered Si nanowire with NiSi2 tip arrays as excellent field emitters. Nanotechnology 2011, 22, 055603.

24

Han, X. L.; Larrieu, G.; Dubois, E.; Cristiano, F. Carrier injection at silicide/silicon interfaces in nanowire based-nanocontacts. Surf. Sci. 2012, 606, 836–839.

25

Hsu, H. F.; Huang, W. R.; Chen, T. H.; Wu, H. Y.; Chen, C. A. Fabrication of Ni-silicide/Si heterostructured nanowire arrays by glancing angle deposition and solid state reaction. Nanoscale Res. Lett. 2013, 8, 224–230.

26

Huang, Z. P.; Fang, H.; Zhu, J. Fabrication of silicon nanowire arrays with controlled diameter, length, and density. Adv. Mater. 2007, 19, 744–748.

27

Mikhael, B.; Elise, B.; Xavier, M.; Sebastian, S.; Johann, M.; Laetitia, P. New silicon architectures by gold-assisted chemical etching. ACS Appl. Mater. Inter. 2011, 3, 3866–3873.

28

d'Heurle, F.; Petersson, S. C.; Stolt, L.; Strizker, B. Diffusion in intermetallic compounds with the CaF2 structure: A marker study of the formation of NiSi2 thin films. J. Appl. Phys. 1982, 53, 5678–5681.

29

Bennett, P. A.; He, Z. A.; Smith, D. J.; Ross, F. M. Endotaxial silicide nanowires: A review. Thin Solid Films 2011, 519, 8434–8440.

30

Fujitani, H. First-principles study of the stability of the NiSi2/Si(111) interface. Phys. Rev. B 1998, 57, 8801–8804.

31

Jiang, S. H.; Xin, Q. Q.; Chen, Y. W.; Lou, H.; Lv, Y. X.; Zeng, W. Preparation of NiSi2 nanowires with low resistivity by reaction between Ni coating and silicon nanowires. Appl. Phys. Express 2009, 2, 075005.

32

Juliesa, B. A.; Knoesena, D.; Pretoriusb, R.; Adams, D. A study of the NiSi to NiSi2 transition in the Ni-Si binary system. Thin Solid Films 1999, 347, 201–207.

33

Chen, Y.; Lin, Y. C.; Huang, C. W.; Wang, C. W.; Chen, L. J.; Wu, W. W.; Huang, Y. Kinetic competition model and size-dependent phase selection in 1-D nanostructures. Nano Lett. 2012, 12, 3115–3120.

34

Chiu, W. L.; Chiu, C. H.; Chen, J. Y.; Huang, C. W.; Huang, Y. T.; Lu, K. C.; Hsin, C. L.; Yeh, P. H.; Wu, W. W. Single-crystalline δ-Ni2Si nanowires with excellent physical properties. Nanoscale Res. Lett. 2013, 8, 290–294.

35

Kim, C. J.; Kang, K.; Woo, Y. S.; Ryu, K. G.; Moon, H.; Kim, J. M.; Zang, D. S.; Jo, M. H. Spontaneous chemical vapor growth of NiSi nanowires and their metallic properties. Adv. Mater. 2007, 19, 3637–3642.

36

Kim, J.; Lee, E. S.; Han, C. S.; Kang, Y.; Kim, D.; Anderson, W. A. Observation of Ni silicide formations and field emission properties of Ni silicide nanowires. Microelectron. Eng. 2008, 85, 1709–1712.

37

Liu, Z. H.; Zhang, H.; Wang, L.; Yang, D. R. Controlling the growth and field emission properties of silicide nanowire arrays by direct silicification of Ni foil. Nanotechnology 2008, 19, 375602.

38

Lee, S.; Yoon, J.; Koo, B.; Shin, D. H.; Koo, J. H.; Lee, C. J.; Kim, Y. W.; Kim, H.; Lee, T. Formation of vertically-aligned cobalt silicide nanowire arrays through a solid-state reaction. Nanotechnol. IEEE Trans. 2013, 12, 704–711.

39

Lu, C. M.; Hsu, H. F.; Lu, K. C. Growth of single-crystalline cobalt silicide nanowires and their field emission property. Nanoscale Res. Lett. 2013, 8, 308–313.

40

Liang, Y. H.; Yu, S. Y.; Hsin, C. L.; Huang, C. W.; Wu, W. W. Growth of single-crystalline cobalt silicide nanowires with excellent physical properties. J. Appl. Phys. 2011, 110, 074302.

41

Lin, H. K.; Tzeng, Y. F.; Wang, C. H.; Tai, N. H.; Lin, I. N.; Lee, C. Y.; Chiu, H. T. Ti5Si3 nanowire and its field emission property. Chem. Mater. 2008, 20, 2429–2431.

42

Xiang, B.; Wang, Q. X.; Wang, Z.; Zhang, X. Z.; Liu, L. Q.; Xu, J.; Yu, D. P. Synthesis and field emission properties of TiSi2 nanowires. Appl. Phys. Lett. 2005, 86, 243103–243106.

43

Lin, H. K.; Cheng, H. A.; Lee, C. Y.; Chiu, H. T. Chemical vapor deposition of TiSi nanowires on C54 TiSi2 thin film: An amorphous titanium silicide interlayer assisted nanowire growth. Chem. Mater. 2009, 21, 5388–5396.

44

Fang, X. S.; Bando, Y.; Gautam, U. K.; Ye, C. H.; Golberg, D. Inorganic semiconductor nanostructures and their field-emission applications. J. Mater. Chem. 2008, 18, 509–522.

45

Araki, H.; Katayama, T.; Yoshino, K. Field emission from aligned carbon nanotubes prepared by thermal chemical vapor deposition of Fe-phthalocyanine. Appl. Phys. Lett. 2001, 79, 2636–2639.

46

Wu, S. L.; Deng, J. H.; Zhang, T.; Zheng, R. T.; Cheng, G. A. Tunable synthesis of carbon nanosheet/silicon nanowire hybrids for field emission applications. Diam. Relat. Mater. 2012, 26, 83–88.

47

Deng, J. H.; Yu, B.; Li, G. Z.; Hou, X. G.; Zhao, M. L.; Li, D. J.; Ting, R. Z.; Cheng, G. A. Self-assembled growth of multi-layer graphene on planar and nanostructured substrates and its field emission properties. Nanoscale 2013, 5, 12388–12393.

48

Ahmad, M.; Rasool, K.; Rafiq, M. A.; Hasan, M. M. Enhanced and persistent photoconductivity in vertical silicon nanowires and ZnS nanoparticles hybrid devices. Appl. Phys. Lett. 2012, 101, 223103.

49

Li, Y.; Li, C. C.; Cho, S. O.; Duan, G. T.; Cai, W. P. Silver hierarchical bowl-like array: Synthesis, superhydrophobicity, and optical properties. Langmuir 2007, 23, 9802–9807.

50

Huang, X. J.; Lee, J. H.; Lee, J. W.; Yoon, J. B.; Choi, Y. K. A one-step route to a perfectly ordered wafer-scale microbowl array for size-dependent superhydrophobicity. Small 2008, 4, 211–216.

51

Wenzel, R. N. Resistance of solid surfaces to wetting by water. Ind. Eng. Chem. 1936, 28, 988–994.

52

Wenzel, R. N. Surface roughness and contact angle. J. Phys. Colloid Chem. 1949, 53, 1466–1467.

53

Extrand, C. W. Contact angles and hysteresis on surfaces with chemically heterogeneous islands. Langmuir 2003, 19, 3793–3796.

54

Wang, J. H.; Bratko, D.; Luzar, A. Probing surface tension additivity on chemically heterogeneous surfaces by a molecular approach. Proc. Natl. Acad. Sci. USA 2011, 108, 6374–6379.

File
12274_2014_519_MOESM1_ESM.pdf (267.4 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 10 February 2014
Revised: 09 June 2014
Accepted: 19 June 2014
Published: 21 August 2014
Issue date: November 2014

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014

Acknowledgements

Acknowledgement

The research was supported by the Ministry of Science and Technology.

Return