Journal Home > Volume 7 , Issue 10

Although the inter-layer coupling in layered materials has attracted considerable interest due to its importance in determining physical properties of two-dimensional systems, studies on the inter-layer coupling in one-dimensional systems have so far been limited. Double-wall carbon nanotubes (DWCNTs) are one of the most fundamental and ideal model systems to study the inter-layer coupling in one-dimensional systems. In this work, Rayleigh scattering spectroscopy and transmission electron microscopy are used to characterize the electronic transition between inner-and outer-nanotubes of the exactly same individual DWCNT. We find that the inter-layer coupling is strong, leading to downshifts in most of the optical transition energies (up to ~0.2 eV) compared to isolated CNTs. We also find that the presence of metallic tubes lead to stronger shifts. The inter-layer screening of Coulomb interactions is one of the key factors in explaining the observed results.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Rayleigh scattering studies on inter-layer interactions in structure-defined individual double-wall carbon nanotubes

Show Author's information Sihan Zhao1Tomoya Kitagawa1Yuhei Miyauchi2,3Kazunari Matsuda2Hisanori Shinohara1( )Ryo Kitaura1( )
Department of Chemistry & Institute for Advanced ResearchNagoya UniversityNagoya464-8602Japan
Institute of Advanced EnergyKyoto UniversityUji, Kyoto611-0011Japan
Japan Science and Technology AgencyPRESTOSaitama332-0012Japan

Abstract

Although the inter-layer coupling in layered materials has attracted considerable interest due to its importance in determining physical properties of two-dimensional systems, studies on the inter-layer coupling in one-dimensional systems have so far been limited. Double-wall carbon nanotubes (DWCNTs) are one of the most fundamental and ideal model systems to study the inter-layer coupling in one-dimensional systems. In this work, Rayleigh scattering spectroscopy and transmission electron microscopy are used to characterize the electronic transition between inner-and outer-nanotubes of the exactly same individual DWCNT. We find that the inter-layer coupling is strong, leading to downshifts in most of the optical transition energies (up to ~0.2 eV) compared to isolated CNTs. We also find that the presence of metallic tubes lead to stronger shifts. The inter-layer screening of Coulomb interactions is one of the key factors in explaining the observed results.

Keywords: electronic properties, inter-layer coupling, one-dimensional system, double-wall carbon, nanotubes (DWCNTs), dielectric screening

References(39)

1

Li, G. H.; Luican, A.; dos Santos, J. M. B. L.; Neto, A. H. C.; Reina, A.; Kong, J.; Andrei, E. Y. Observation of van Hove singularities in twisted graphene layers. Nat. Phys. 2010, 6, 109–113.

2

Brihuega, I.; Mallet, P.; Gonzalez-Herrero, H.; de Laissardiere, G. T.; Ugeda, M. M.; Magaud, L.; Gomez-Rodriguez, J. M.; Yndurain, F.; Veuillen, J. Y. Unraveling the intrinsic and robust nature of van Hove singularities in twisted bilayer graphene by scanning tunneling microscopy and theoretical analysis. Phys. Rev. Lett. 2012, 109, 196802.

3

Ponomarenko, L. A.; Gorbachev, R. V.; Yu, G. L.; Elias, D. C.; Jalil, R.; Patel, A. A.; Mishchenko, A.; Mayorov, A. S.; Woods, C. R.; Wallbank, J. R. et al. Cloning of Dirac fermions in graphene superlattices. Nature 2013, 497, 594–597.

4

Dean, C. R.; Wang, L.; Maher, P.; Forsythe, C.; Ghahari, F.; Gao, Y.; Katoch, J.; Ishigami, M.; Moon, P.; Koshino, M. et al. Hofstadter's butterfly and the fractal quantum Hall effect in moiré superlattices. Nature 2013, 497, 598–602.

5

Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.

6

Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N. Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712.

7

Andrews, R.; Jacques, D.; Qian, D. L.; Rantell, T. Multiwall carbon nanotubes: Synthesis and application. Acc. Chem. Res. 2002, 35, 1008–1017.

8

Golberg, D.; Bando, Y.; Huang, Y.; Terao, T.; Mitome, M.; Tang, C. C.; Zhi, C. Y. Boron nitride nanotubes and nanosheets. ACS Nano 2010, 4, 2979–2993.

9

Nath, M.; Govindaraj, A.; Rao, C. N. R. Simple synthesis of MoS2 and WS2 nanotubes. Adv. Mat. 2001, 13, 283–286.

10

Levshov, D.; Than, T. X.; Arenal, R.; Popov, V. N.; Parret, R.; Paillet, M.; Jourdain, V.; Zahab, A. A.; Michel, T.; Yuzyuk, Y. I. et al. Experimental evidence of a mechanical coupling between layers in an individual double-walled carbon nanotube. Nano Lett. 2011, 11, 4800–4804.

11

Liu, K. H.; Hong, X. P.; Wu, M. H.; Xiao, F. J.; Wang, W. L.; Bai, X. D.; Ager, J. W.; Aloni, S.; Zettl, A.; Wang, E. G. et al. Quantum-coupled radial-breathing oscillations in double-walled carbon nanotubes. Nat. Commun. 2013, 4, 1375.

12

Endo, M.; Muramatsu, H.; Hayashi, T.; Kim, Y. A.; Terrones, M.; Dresselhaus, M. S. Nanotechnology: 'Buckypaper' from coaxial nanotubes. Nature 2005, 433, 476.

13

Kociak, M.; Suenaga, K.; Hirahara, K.; Saito, Y.; Nakahira, T.; Iijima, S. Linking chiral indices and transport properties of double-walled carbon nanotubes. Phys. Rev. Lett. 2002, 89, 155501.

14

Tison, Y.; Giusca, C. E.; Stolojan, V.; Hayashi, Y.; Silva, S. R. P. The inner shell influence on the electronic structure of double-walled carbon nanotubes. Adv. Mater. 2008, 20, 189–194.

15

Liu, K. H.; Wang, W. L.; Xu, Z.; Bai, X. D.; Wang, E. G.; Yao, Y. G.; Zhang, J.; Liu, Z. F. Chirality-dependent transport properties of double-walled nanotubes measured in situ on their field-effect transistors. J. Am. Chem. Soc. 2009, 131, 62–63.

16

Sfeir, M. Y.; Wang, F.; Huang, L. M.; Chuang, C. C.; Hone, J.; O'Brien, S. P.; Heinz, T. F.; Brus, L. E. Probing electronic transitions in individual carbon nanotubes by rayleigh scattering. Science 2004, 306, 1540–1543.

17

Sfeir, M. Y.; Beetz, T.; Wang, F.; Huang, L. M.; Huang, X. M. H.; Huang, M. Y.; Hone, J.; O'Brien, S.; Misewich, J. A.; Heinz, T. F. et al. Optical spectroscopy of individual single-walled carbon nanotubes of defined chiral structure. Science 2006, 312, 554–556.

18

Qin, L. C. Electron diffraction from carbon nanotubes. Rep. Prog. Phys. 2006, 69, 2761–2821.

19

Hirahara, K.; Kociak, M.; Bandow, S.; Nakahira, T.; Itoh, K.; Saito, Y.; Iijima, S. Chirality correlation in double-wall carbon nanotubes as studied by electron diffraction. Phys. Rev. B 2006, 73, 195420.

20

Jiang, H.; Nasibulin, A. G.; Brown, D. P. Kauppinen, E. I. Unambiguous atomic structural determination of single-walled carbon nanotubes by electron diffraction. Carbon 2007, 45, 662–667.

21

Liu, K. H.; Xu, Z.; Wang, W. L.; Gao, P.; Fu, W. Y.; Bai, X. D.; Wang, E. G. Direct determination of atomic structure of large-indexed carbon nanotubes by electron diffraction: Application to double-walled nanotubes. J. Phys. D: Appl. Phys. 2009, 42, 125412.

22

Liu, K. H.; Deslippe, J.; Xiao, F. J.; Capaz, R. B.; Hong, X. P.; Aloni, S.; Zettl, A.; Wang, W. L.; Bai, X. D.; Louie, S. G. et al. An atlas of carbon nanotube optical transitions. Nat. Nanotechnol. 2012, 7, 325–329.

23

Plentz, F.; Ribeiro, H. B.; Jorio, A.; Strano, M. S.; Pimenta, M. A. Direct experimental evidence of exciton-phonon bound states in carbon nanotubes. Phys. Rev. Lett. 2005, 95, 247401.

24

Berciaud, S.; Voisin, C.; Yan, H. G.; Chandra, B.; Caldwell, R.; Shan, Y. Y.; Brus, L. E.; Hone, J.; Heinz, T. F. Excitons and high-order optical transitions in individual carbon nanotubes: A rayleigh scattering spectroscopy study. Phys. Rev. B 2010, 81, 041414.

25
Hertel, T. Photophysics in Carbon Nanotubes and RelatedStructures. Guldi, D.; Martin, N., Eds; Wiley-VCH: Weinheim, 2010.
26

Lefebvre, J.; Finnie, P. Polarized photoluminescence excitation spectroscopy of single-walled carbon nanotubes. Phys. Rev. Lett. 2007, 98, 167406.

27

Hertel, T.; Perebeinos, V.; Crochet, J.; Arnold, K.; Kappes, M.; Avouris, P. Intersubband decay of 1-D exciton resonances in carbon nanotubes. Nano Lett. 2008, 8, 87–91.

28

Lauret, J. S.; Voisin, C.; Cassabois, G.; Delalande, C.; Roussignol, P.; Jost, O.; Capes, L. Ultrafast carrier dynamics in single-wall carbon nanotubes. Phys. Rev. Lett. 2003, 90, 057404.

29

Koyama, T.; Asada, Y.; Hikosaka, N.; Miyata, Y.; Shinohara, H.; Nakamura, A. Ultrafast exciton energy transfer between nanoscale coaxial cylinders: Intertube transfer and luminescence quenching in double-walled carbon nanotubes. ACS Nano 2011, 5, 5881–5887.

30

Malic, E.; Maultzsch, J.; Reich, S.; Knorr, A. Excitonic Rayleigh scattering spectra of metallic single-walled carbon nanotubes. Phys. Rev. B 2010, 82, 115439.

31

Spataru, C. D.; Ismail-Beigi, S.; Benedict, L. X.; Louie, S. G. Excitonic effects and optical spectra of single-walled carbon nanotubes. Phys. Rev. Lett. 2004, 92, 077402.

32

Chang, E.; Bussi, G.; Ruini, A.; Molinari, E. Excitons in carbon nanotubes: An ab initio symmetry-based approach. Phys. Rev. Lett. 2004, 92, 196401.

33

Kane, C. L.; Mele, E. J. Electron interactions and scaling relations for optical excitations in carbon nanotubes. Phys. Rev. Lett. 2004, 93, 197402.

34

Lüer, L.; Hoseinkhani, S.; Polli, D.; Crochet, J.; Hertel, T.; Lanzani, G. Size and mobility of excitons in (6, 5) carbon nanotubes. Nat. Phys. 2009, 5, 54–58.

35

Tomio, Y.; Suzuura, H.; Ando, T. Interwall screening and excitons in double-wall carbon nanotubes. Phys. Rev. B 2012, 85, 085411.

36

Ohno, Y.; Iwasaki, S.; Murakami, Y.; Kishimoto, S.; Maruyama, S.; Mizutani, T. Chirality-dependent environmental effects in photoluminescence of single-walled carbon nanotubes. Phys. Rev. B 2006, 73, 235427.

37

Miyauchi, Y.; Saito, R.; Sato, K.; Ohno, Y.; Iwasaki, S.; Mizutani, T.; Jiang, J.; Maruyama, S. Dependence of exciton transition energy of single-walled carbon nanotubes on surrounding dielectric materials. Chem. Phys. Lett. 2007, 442, 394–399.

38

Sato, K.; Saito, R.; Jiang, J.; Dresselhaus, G.; Dresselhaus, M. S. Discontinuity in the family pattern of single-wall carbon nanotubes. Phys. Rev. B 2007, 76, 195446.

39

Wang, F.; Sfeir, M. Y.; Huang, L. M.; Huang, X. M. H.; Wu, Y.; Kim, J.; Hone, J.; O'Brien, S.; Brus, L. E.; Heinz, T. F. Interactions between individual carbon nanotubes studied by Rayleigh scattering spectroscopy. Phys. Rev. Lett. 2006, 96, 167401

File
12274_2014_515_MOESM1_ESM.pdf (2.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 14 April 2014
Revised: 08 June 2014
Accepted: 12 June 2014
Published: 21 August 2014
Issue date: October 2014

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014

Acknowledgements

Acknowledgements

We thank Dr. Kentaro Sato, Dr. Ahmad Nuguraha and Prof. Riichiro Saito for fruitful discussions. This work was supported by the Grant-in-aid for Young Scientists A (Nos. 25708002 and 24681031), Scientific Research on Innovative Areas (No. 25107002) and Scientific Research S (No. 22225001) from MEXT Japan and a PRESTO Grant from JST. This work was also supported by the Global COE Program in Chemistry, Nagoya University and the ZE Research Program, IAE (No. ZE25B-38).

Return