Journal Home > Volume 7 , Issue 10

The kinetic competition between electron-hole recombination and water oxidation is a key limitation for the development of efficient solar water splitting materials. In this study, we present a solution for solving this challenge by constructing a quantum dot-intercalated nanostructure. For the first time, we show the interlayer charge of the intercalated nanostructure can significantly inhibit the electron-hole recombination in photocatalysis. For Bi2WO6 quantum dots (QDs) intercalated in a montmorillonite (MMT) nanostructure as an example, the average lifetime of the photogenerated charge carriers was increased from 3.06 μs to 18.8 μs by constructing the intercalated nanostructure. The increased lifetime markedly improved the photocatalytic performance of Bi2WO6 both in solar water oxidation and environmental purification. This work not only provides a method to produce QD-intercalated ultrathin nanostructures but also a general route to design efficient semiconductor-based photoconversion materials for solar fuel generation and environmental purification.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Bi2WO6 quantum dot-intercalated ultrathin montmorillonite nanostructure and its enhanced photocatalytic performance

Show Author's information Songmei Sun1Wenzhong Wang1( )Dong Jiang1Ling Zhang1Xiaoman Li1Yali Zheng1Qi An2
State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of CeramicsChinese Academy of SciencesShanghai200050China
Materials and Process Simulation CenterCalifornia Institute of TechnologyPasadenaCA91125USA

Abstract

The kinetic competition between electron-hole recombination and water oxidation is a key limitation for the development of efficient solar water splitting materials. In this study, we present a solution for solving this challenge by constructing a quantum dot-intercalated nanostructure. For the first time, we show the interlayer charge of the intercalated nanostructure can significantly inhibit the electron-hole recombination in photocatalysis. For Bi2WO6 quantum dots (QDs) intercalated in a montmorillonite (MMT) nanostructure as an example, the average lifetime of the photogenerated charge carriers was increased from 3.06 μs to 18.8 μs by constructing the intercalated nanostructure. The increased lifetime markedly improved the photocatalytic performance of Bi2WO6 both in solar water oxidation and environmental purification. This work not only provides a method to produce QD-intercalated ultrathin nanostructures but also a general route to design efficient semiconductor-based photoconversion materials for solar fuel generation and environmental purification.

Keywords: photocatalysis, lifetime, water oxidation, ammonia degradation, montmorillonite exfoliation

References(43)

1

Wang, Z.; Yang, C. Y.; Lin, T. Q.; Yin, H.; Chen, P.; Wan, D. Y.; Xu, F. F.; Huang, F. Q.; Lin, J. H.; Xie, X. M. et al. H-doped black titania with very high solar absorption and excellent photocatalysis enhanced by localized surface plasmon resonance. Adv. Funct. Mater. 2013, 23, 5444–5450.

2

Yuan, S. -J.; Chen, J. -J.; Lin, Z. -Q.; Li, W. -W.; Sheng, G. -P.; Yu, H. -Q. Nitrate formation from atmospheric nitrogen and oxygen photocatalysed by nano-sized titanium dioxide. Nat. Commun. 2013, 4, 2249.

3

Xu, C. B.; Yang, W. S.; Guo, Q.; Dai, D. X.; Chen, M. D.; Yang, X. M. Molecular hydrogen formation from photocatalysis of methanol on TiO2 (110). J. Am. Chem. Soc. 2013, 135, 10206–10209.

4

Ide, Y.; Torii, M.; Sano, T. Layered silicate as an excellent partner of a TiO2 photocatalyst for efficient and selective green fine-chemical synthesis. J. Am. Chem. Soc. 2013, 135, 11784–11786.

5

Abe, R.; Shinmei, K.; Koumura, N.; Hara, K.; Ohtani, B. Visible-light-induced water splitting based on two-step photoexcitation between dye-sensitized layered niobate and tungsten oxide photocatalysts in the presence of a triiodide/iodide shuttle redox mediator. J. Am. Chem. Soc. 2013, 135, 16872–16884.

6

Yan, S. C.; Wang, J. J.; Gao, H. L.; Wang, N. Y.; Yu, H.; Li, Z. S.; Zhou, Y.; Zou, Z. G. Zinc gallogermanate solid solution: A novel photocatalyst for efficiently converting CO2 into solar fuels. Adv. Funct. Mater. 2013, 23, 1839–1845.

7

Niu, P.; Zhang, L. L.; Liu, G.; Cheng, H. -M. Graphene-like carbon nitride nanosheets for improved photocatalytic activities. Adv. Funct. Mater. 2012, 22, 4763–4770.

8

Maeda, K.; Teramura, K.; Lu, D. L.; Takata, T.; Saito, N.; Inoue, Y.; Domen, K. Photocatalyst releasing hydrogen from water. Nature 2006, 440, 295.

9

Duncan, T. V. Applications of nanotechnology in food packaging and food safety: Barrier materials, antimicrobials and sensors. J. Colloid Interface Sci. 2011, 363, 1–24.

10

Boukhatem, H.; Djouadi, L.; Abdelaziz, N.; Khalaf, H. Synthesis, characterization and photocatalytic activity of CdS-montmorillonite nanocomposites. Appl. Clay Sci. 2013, 72, 44–48.

11

Liu, J. J.; Dong, M. Q.; Zuo, S. L.; Yu, Y. C. Solvothermal preparation of TiO2/montmorillonite and photocatalytic activity. Appl. Clay Sci. 2009, 43, 156–159.

12

Chen, J. Y.; Li, G. Y.; He, Z. G.; An, T. C. Adsorption and degradation of model volatile organic compounds by a combined titania-montmorillonite-silica photocatalyst. J. Hazard. Mater. 2011, 190, 416–423.

13

Ooka, C.; Akita, S.; Ohashi, Y.; Horiuchi, T.; Suzuki, K.; Komai, S.; Yoshida, H.; Hattori, T. Crystallization of hydrothermally treated TiO2 pillars in pillared montmorillonite for improvement of the photocatalytic activity. J. Mater. Chem. 1999, 9, 2943–2952.

14

Zhang, G. K.; Ding, X. M.; He, F. S.; Yu, X. Y.; Zhou, J.; Hu, Y. J.; Xie, J. W. Low-temperature synthesis and photocatalytic activity of TiO2 pillared montmorillonite. Langmuir, 2008, 24, 1026–1030.

15

Nascimento, C. C.; Andrade, G. R. S.; Neves, E. C.; Barbosa, C. D. E. S.; Costa, L. P.; Barreto, L. S.; Gimenez, I. F. Nanocomposites of CdS nanocrystals with montmorillonite functionalized with thiourea derivatives and their use in photocatalysis. J. Phys. Chem. C 2012, 116, 21992–22000.

16

Fatimah, I.; Wang, S. B.; Wulandari, D. ZnO/montmorillonite for photocatalytic and photochemical degradation of methylene blue. Appl. Clay Sci. 2011, 53, 553–560.

17

Kudo, A.; Hijii, S. H2 or O2 evolution from aqueous solutions on layered oxide photocatalysts consisting of Bi3+ with 6s2 configuration and d0 transition metal ions. Chem. Lett. 1999, 28, 1103–1104.

18

Sun, S. M.; Wang, W. Z.; Zhang, L.; Gao, E. P.; Jiang, D.; Sun, Y. F.; Xie, Y. Ultrathin {1}-oriented bismuth tungsten oxide nanosheets as highly efficient photocatalysts. ChemSusChem 2013, 6, 1873–1877.

19

Zhang, L. W.; Bahnemann, D. Synthesis of nanovoid Bi2WO6 2D ordered arrays as photoanodes for photoelectrochemical water splitting. ChemSusChem 2013, 6, 283–290.

20

Bhattacharya, C.; Lee, H. C.; Bard, A. J. Rapid screening by scanning electrochemical microscopy (SECM) of dopants for Bi2WO6 improved photocatalytic water oxidation with Zn doping. J. Phys. Chem. C 2013, 117, 9633–9640.

21

Hill, J. C.; Choi, K. -S. Synthesis and characterization of high surface area CuWO4 and Bi2WO6 electrodes for use as photoanodes for solar water oxidation. J. Mater. Chem. A 2013, 1, 5006–5014.

22

Zhu, S. B.; Xu, T. G.; Fu, H. B.; Zhao, J. C.; Zhu, Y. F. Synergetic effect of Bi2WO6 photocatalyst with C60 and enhanced photoactivity under visible irradiation. Environ. Sci. Technol. 2007, 41, 6234–6239.

23

Wu, J.; Duan, F.; Zheng, Y.; Xie, Y. Synthesis of Bi2WO6 nanoplate-built hierarchical nest-like structures with visible-light-induced photocatalytic activity. J. Phys. Chem. C 2007, 111, 12866–12871.

24

He, D. Q.; Wang, L. L.; Li, H. Y.; Yan, T. Y.; Wang, D. J.; Xie, T. F. Self-assembled 3D hierarchical clew-like Bi2WO6 microspheres: Synthesis, photo-induced charges transfer properties, and photocatalytic activities. CrystEngComm 2011, 13, 4053–4059.

25

Xu, L.; Yang, X. Y.; Zhai, Z.; Hou, W. H. EDTA-mediated shape-selective synthesis of Bi2WO6 hierarchical self-assemblies with high visible-light-driven photocatalytic activities. CrystEngComm 2011, 13, 7267–7275.

26

Chen, Z.; Qian, L. W.; Zhu, J.; Yuan, Y. P.; Qian, X. F. Controlled synthesis of hierarchical Bi2WO6 microspheres with improved visible-light-driven photocatalytic activity. CrystEngComm 2010, 12, 2100–2106.

27

Dai, X. -J.; Luo, Y. -S.; Zhang, W. -D.; Fu, S. -Y. Facile hydrothermal synthesis and photocatalytic activity of bismuth tungstate hierarchical hollow spheres with an ultrahigh surface area. Dalton Trans. 2010, 39, 3426–3432.

28

Tian, J.; Sang, Y. H.; Yu, G. W.; Jiang, H. D.; Mu, X. N.; Liu, H. A Bi2WO6-based hybrid photocatalyst with broad spectrum photocatalytic properties under UV, visible, and near-infrared irradiation. Adv. Mater. 2013, 25, 5075–5080.

29

Sun, S. M.; Wang, W. Z.; Zhang, L. Efficient contaminant removal by Bi2WO6 films with nanoleaflike structures through a photoelectrocatalytic process. J. Phys. Chem. C 2012, 116, 19413–19418.

30

Zhang, Z. J.; Wang, W. Z.; Xu, J.; Shang, M.; Ren, J.; Sun, S. M. Enhanced photocatalytic activity of Bi2WO6 doped with upconversion luminescence agent. Catal. Commun. 2011, 13, 31–34.

31

Yu, J. G.; Xiong, J. F.; Cheng, B.; Yu, Y.; Wang, J. B. Hydrothermal preparation and visible-light photocatalytic activity of Bi2WO6 powders. J. Solid State Chem. 2005, 178, 1968–1972.

32

Amano, F.; Yamakata, A.; Nogami, K.; Osawa, M.; Ohtani, B. Visible light responsive pristine metal oxide photocatalyst: Enhancement of activity by crystallization under hydrothermal treatment. J. Am. Chem. Soc. 2008, 130, 17650–17651.

33

Xu, J. H.; Wang, W. Z.; Shang, M.; Sun, S. M.; Ren, J.; Zhang, L. Efficient visible light induced degradation of organic contaminants by Bi2WO6 film on SiO2 modified reticular substrate. Appl. Catal. B: Environ. 2010, 93, 227–232.

34

Chen, Y. L.; Cao, X. X.; Kuang, J. D.; Chen, Z.; Chen, J. L.; Lin, B. Z. The gas-phase photocatalytic mineralization of benzene over visible-light-driven Bi2WO6@C microspheres. Catal. Commun. 2010, 12, 247–250.

35

Shang, M.; Wang, W. Z.; Ren, J.; Sun, S. M.; Wang, L.; Zhang, L. A practical visible-light-driven Bi2WO6 nanofibrous mat prepared by electrospinning. J. Mater. Chem. 2009, 19, 6213–6218.

36

Sun, S. M.; Wang, W. Z.; Zhang, L. Facile preparation of three-dimensionally ordered macroporous Bi2WO6 with high photocatalytic activity. J. Mater. Chem. 2012, 22, 19244–19249.

37

Chen, P.; Zhu, L. Y.; Fang, S. H.; Wang, C. Y.; Shan, G. Q. Photocatalytic degradation efficiency and mechanism of microcystin-RR by mesoporous Bi2WO6 under near ultraviolet light. Environ. Sci. Technol. 2012, 46, 2345–2351.

38

Tombácz, E.; Balázs, J.; Lakatos, J.; Szántó, E. Influence of the exchangeable cations on stability and rheological properties of montmorillonite suspensions. Colloid Polym Sci. 1989, 267, 1016–1025.

39

Alther, G. R. The effect of the exchangeable cations on the physico-chemical properties of Wyoming bentonites. Appl. Clay Sci. 1986, 1, 273–284.

40

Yildiz, N.; Sarikaya, Y.; ?alimli, A. The effect of the electrolyte concentration and pH on the rheological properties of the original and the Na2CO3-activated Kütahya bentonite. Appl. Clay Sci. 1999, 14, 319–327.

41

Sun, S. M.; Wang, W. Z.; Zhang, L. Bi2WO6 quantum dots decorated reduced graphene oxide: Improved charge separation and enhanced photoconversion efficiency. J. Phys. Chem. C 2013, 117, 9113–9120.

42

Sing, K. S. W.; Everett, D. H.; Haul, R. A. W.; Moscou, L.; Pierotti, R. A.; Rouquérol, J.; Siemieniewska, T. Reporting physisorption data for gas/solid systems-with special reference to the determination of surface area and porosity. Pure Appl. Chem. 1985, 57, 603–619.

43

Bishop, J.; Banin, A.; Mancinelli, R. L.; Klovstad, M. R. Detection of soluble and fixed NH4 + in clay minerals by DTA and IR reflectance spectroscopy: A potential tool for planetary surface exploration. Planet. Space Sci. 2002, 50, 11–19.

File
12274_2014_511_MOESM1_ESM.pdf (609.3 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 31 March 2014
Revised: 23 May 2014
Accepted: 09 June 2014
Published: 26 July 2014
Issue date: October 2014

Copyright

© Tsinghua University Press and Springer‐Verlag Berlin Heidelberg 2014

Acknowledgements

Acknowledgements

This work was financially supported by the National Basic Research Program of China (Grant Nos. 2010CB933503, 2013CB933203), the National Natural Science Foundation of China (Grant Nos. 51102262, 51272269), and the Science Foundation for Youth Scholars of the State Key Laboratory of High Performance Ceramics and Superfine Microstructures (Grant No. SKL201204).

Return