Journal Home > Volume 7 , Issue 10

In nature, a few living organisms such as diatoms, magnetotactic bacteria, and eggs have developed specific mineral structures, which can provide extensive protection or unique functions. However, most organisms do not have such structured materials due to their lack of biomineralization ability. The artificial introduction of biomimetic-constructed nanominerals is challenging but holds great promise. In this overview, we highlight two typical types of mineral-living complex systems. One involves biological surface-induced nanomaterials, which produces artificial living-mineral core-shell structures such as the mineralencapsulated yeast, cyanobacteria, bacteria and viruses. The other involves internal nanominerals that could endow organisms with unique structures and properties. The applications of these biomimetic generated nanominerals are further discussed, mainly in four potential areas: storage, protection, "stealth" and delivery. Since biomineralization combines chemical, nano and biological technologies, we suggest that nanobiomimetic mineralization may open up another window for interdisciplinary research. Specifically, this is a novel material-based biological regulation strategy and the integration of living organisms with functional nanomaterials can create "super" or intelligent nanoscale living complexes for biotechnological practices.


menu
Abstract
Full text
Outline
About this article

Nanomodification of living organisms by biomimetic mineralization

Show Author's information Wei Chen1Guangchuan Wang2Ruikang Tang1,2( )
Center for Biomaterials and BiopathwaysDepartment of ChemistryZhejiang UniversityHangzhouZhejiang310027China
Qiushi Academy for Advanced StudiesZhejiang UniversityHangzhouZhejiang310027China

Abstract

In nature, a few living organisms such as diatoms, magnetotactic bacteria, and eggs have developed specific mineral structures, which can provide extensive protection or unique functions. However, most organisms do not have such structured materials due to their lack of biomineralization ability. The artificial introduction of biomimetic-constructed nanominerals is challenging but holds great promise. In this overview, we highlight two typical types of mineral-living complex systems. One involves biological surface-induced nanomaterials, which produces artificial living-mineral core-shell structures such as the mineralencapsulated yeast, cyanobacteria, bacteria and viruses. The other involves internal nanominerals that could endow organisms with unique structures and properties. The applications of these biomimetic generated nanominerals are further discussed, mainly in four potential areas: storage, protection, "stealth" and delivery. Since biomineralization combines chemical, nano and biological technologies, we suggest that nanobiomimetic mineralization may open up another window for interdisciplinary research. Specifically, this is a novel material-based biological regulation strategy and the integration of living organisms with functional nanomaterials can create "super" or intelligent nanoscale living complexes for biotechnological practices.

Keywords: nanomaterial, biomineralization, living organism, bioinspiration, material-based bio-modification

References(137)

1
Mann, S.; Webb, J. M.; Williams, R. J. P. Biomineralization: chemical and biochemical perspectives. John Wiley & Sons: 1989.
2

Lowenstam, H. A.; Weiner, S. On biomineralization. Oxford University Press: 1989.

DOI
3

Mann, S. Biomineralization: principles and concepts in bioinorganic materials chemistry. Oxford University Press: 2001.

4

Hamm, C. E.; Merkel, R.; Springer, O.; Jurkojc, P.; Maier, C.; Prechtel, K.; Smetacek, V. Architecture and material properties of diatom shells provide effective mechanical protection. Nature 2003, 421, 841–843.

5

Hildebrand, M. Diatoms, biomineralization processes, and genomics. Chem. Rev. 2008, 108, 4855–4874.

6

Bazylinski, D. A. and Frankel, R. B. Magnetosome formation in prokaryotes. Nat. Rev. Microbiol. 2004, 2, 217–230.

7

Faivre, D.; Schüler, D. Magnetotactic bacteria and magnetosomes. Chem. Rev. 2008, 108, 4875–4898.

8

Nys, Y.; Hincke, M.; Arias, J.; Garcia-Ruiz, J.; Solomon, S. Avian eggshell mineralization. Poult. Avian Biol. Rev. 1999, 10, 143–166.

9

Karlsson, O.; Lilja, C. Eggshell structure, mode of development and growth rate in birds. Zoology 2008, 111, 494–502.

10

Bernard, A.; Fuller, B. J. Cryopreservation of human oocytes: a review of current problems and perspectives. Hum. Reprod. Update 1996, 2, 193–207.

11

Estroff, L. A. Introduction: biomineralization. Chem. Rev. 2008, 108, 4329–4331.

12

Aizenberg, J.; Weaver, J. C.; Thanawala, M. S.; Sundar, V. C.; Morse, D. E.; Fratzl, P. Skeleton of Euplectella sp. : structural hierarchy from the nanoscale to the macroscale. Science 2005, 309, 275–278.

13

Weiner, S.; Addadi, L. Crystallization pathways in biomineralization. Annual Rev. Mater. Res. 2011, 41, 21–40.

14

Arias, J.; Fernández, M. Polysaccharides and proteoglycans in calcium carbonate-based biomineralization. Chem. Rev. 2008, 108, 4475–4482.

15

Omelon, S. J.; Grynpas, M. D. Relationships between polyphosphate chemistry, biochemistry and apatite biomineralization. Chem. Rev. 2008, 108, 4694–4715.

16

Moskowitz, B. M. Biomineralization of magnetic minerals. Rev. Geophys. 1995, 33, 123–128.

17

Addadi, L.; Joester, D.; Nudelman, F.; Weiner, S. Mollusk shell formation: a source of new concepts for understanding biomineralization processes. Chem. -Eur. J. 2006, 12, 980–987.

18

Addadi, L.; Weiner, S. Biomineralization: A pavement of pearl. Nature 1997, 389, 912–915.

19

Killian, C.; Wilt, F. Molecular aspects of biomineralization of the echinoderm endoskeleton. Chem. Rev. 2008, 108, 4463–4474.

20

Kawasaki, K.; Buchanan, A.; Weiss, K. Biomineralization in humans: making the hard choices in life. Annu. Rev. Genet. 2009, 43, 119–142.

21

Addadi, L.; Raz, S.; Weiner, S. Taking advantage of disorder: amorphous calcium carbonate and its roles in biomineralization. Adv. Mater. 2003, 15, 959–970.

22

Gower, L. Biomimetic model systems for investigating the amorphous precursor pathway and its role in biomineralization. Chem. Rev. 2008, 108, 4551–4627.

23

Evans, J. "Tuning in" to mollusk shell nacre- and prismatic-associated protein terminal sequences. Implications for biomineralization and the construction of high performance inorganic-organic composites. Chem. Rev. 2008, 108, 4455–4462.

24

Stephen, M. Molecular recognition in biomineralization. Nature 1988, 332, 119–124.

25

Mann, S. Molecular tectonics in biomineralization and biomimetic materials chemistry. Nature 1993, 365, 499–505.

26

Falini, G.; Albeck, S.; Weiner, S.; Addadi, L. Control of aragonite or calcite polymorphism by mollusk shell macromolecules. Science 1996, 271, 67–69.

27

Belcher, A. M.; Wu, X. H.; Christensen, R. J.; Hansma, P. K.; Stucky, G. D.; Morse, D. E. Control of crystal phase switching and orientation by soluble mollusc-shell proteins. Nature 1996, 381, 56–58.

28

Stephen, M.; Brigid, R. H.; Sundara, R.; Birchall, J. D. Controlled crystallization of CaCO3 under stearic acid monolayers. Nature 1988, 334, 692–695.

29

Patricia, A. B.; Jun, L.; Angela, R. S. Crystallization of an inorganic phase controlled by a polymer matrix. Nature 1991, 349, 315–317.

30

Veis, A. A window on biomineralization. Science 2005, 307, 1419–1420.

31

Cölfen, H. Biomineralization: A crystal-clear view. Nat. Mater. 2010, 9, 960–961.

32

Addadi, L.; Weiner, S. Crystals, asymmetry and life. Nature 2001, 411, 753–755.

33

Bettye, L. S.; Tilman, E. S.; Mario, V.; James, B. T.; Neil, A. F.; Johannes, K.; Angela, B.; Galen, D. S.; Daniel, E. M. and Paul, K. H. Molecular mechanistic origin of the toughness of natural adhesives, fibres and composites. Nature 1999, 399, 761–763.

34

Mann, S.; Archibald, D.; Didymus, J.; Douglas, T.; Heywood, B.; Meldrum, F.; Reeves, N. Crystallization at inorganic-organic interfaces: biominerals and biomimetic synthesis. Science 1993, 261, 1286–1292.

35

Addadi, L.; Weiner, S. Interactions between acidic proteins and crystals: stereochemical requirements in biomineralization. Proc. Natl. Acad. Sci. USA 1985, 82, 4110–4114.

36

Arias, J. L.; Fernández, M. a. S. Polysaccharides and proteoglycans in calcium carbonate-based biomineralization. Chem. Rev. 2008, 108, 4475–4482.

37

Tsuji, T.; Onuma, K.; Yamamoto, A.; Iijima, M.; Shiba, K. Direct transformation from amorphous to crystalline calcium phosphate facilitated by motif-programmed artificial proteins. Proc. Natl. Acad. Sci. USA 2008, 105, 16866–16870.

38

George, A.; Veis, A. Phosphorylated proteins and control over apatite nucleation, crystal growth, and inhibition. Chem. Rev. 2008, 108, 4670–4693.

39

Kröger, N.; Deutzmann, R.; Bergsdorf, C.; Sumper, M. Species-specific polyamines from diatoms control silica morphology. Proc. Natl. Acad. Sci. USA 2000, 97, 14133–14138.

40

Sumper, M.; Kröger, N. Silica formation in diatoms: the function of long-chain polyamines and silaffins. J. Mater. Chem. 2004, 14, 2059–2065.

41

Pohnert, G. Biomineralization in diatoms mediated through peptide- and polyamine-assisted condensation of silica. Angew. Chem. Int. Ed. 2002, 41, 3167–3169.

DOI
42

Kröger, N.; Lorenz, S.; Brunner, E.; Sumper, M. Self-assembly of highly phosphorylated silaffins and their function in biosilica morphogenesis. Science 2002, 298, 584–586.

43

Poulsen, N.; Sumper, M.; Kröger, N. Biosilica formation in diatoms: characterization of native silaffin-2 and its role in silica morphogenesis. Proc. Natl. Acad. Sci. USA 2003, 100, 12075–12080.

44

Scheffel, A.; Gruska, M.; Faivre, D.; Linaroudis, A.; Plitzko, J.; Schüler, D. An acidic protein aligns magnetosomes along a filamentous structure in magnetotactic bacteria. Nature 2006, 440, 110–114.

45

Schüler, D. Formation of magnetosomes in magnetotactic bacteria. J. Mol. Microb. Biotech. 1999, 1, 79–86.

46

Wang, B.; Liu, P.; Jiang, W.; Pan, H.; Xu, X.; Tang, R. Yeast cells with an artificial mineral shell: Protection and modification of living cells by biomimetic mineralization. Angew. Chem. Int. Ed. 2008, 47, 3560–3564.

47

Xiong, W.; Yang, Z.; Zhai, H.; Wang, G.; Xu, X.; Ma, W.; Tang, R. Alleviation of high light-induced photoinhibition in cyanobacteria by artificially conferred biosilica shells. Chem. Comm. 2013, 49, 7525–7527.

48

Wang, G.; Wang, L.; Liu, P.; Yan, Y.; Xu, X.; Tang, R. Extracellular silica nanocoat confers thermotolerance on individual cells: a case study of material-based functionalization of living cells. ChemBioChem 2010, 11, 2368–2373.

49

Yang, S. H.; Lee, K. B.; Kong, B.; Kim, J. H.; Kim, H. S.; Choi, I. S. Biomimetic encapsulation of individual cells with silica. Angew. Chem. Int. Ed. 2009, 48, 9160–9163.

50

Yang, S. H.; Ko, E. H.; Jung, Y. H.; Choi, I. S. Bioinspired functionalization of silica-encapsulated yeast cells. Angew. Chem. Int. Ed. 2011, 123, 6239–6242.

51

Wang, B.; Liu, P.; Tang, Y.; Pan, H.; Xu, X.; Tang, R. Guarding embryo development of zebrafish by shell engineering: a strategy to shield life from ozone depletion. PloS one 2010, 5, e9963.

52

Zhou, H.; Fan, T.; Zhang, D.; Guo, Q.; Ogawa, H. Novel bacteria-templated sonochemical route for the in situ one-step synthesis of ZnS hollow nanostructures. Chem. Mater. 2007, 19, 2144–2146.

53

Zhou, H.; Fan, T.; Han, T.; Li, X.; Ding, J.; Zhang, D.; Guo, Q.; Ogawa, H. Bacteria-based controlled assembly of metal chalcogenide hollow nanostructures with enhanced light-harvesting and photocatalytic properties. Nanotechnology 2009, 20, 085603.

54

Wang, G.; Li, X.; Mo, L.; Song, Z.; Chen, W.; Deng, Y.; Zhao, H.; Qin, E.; Qin, C. and Tang, R. Eggshell-inspired biomineralization generates vaccines that do not require refrigeration. Angew. Chem. Int. Ed. 2012, 124, 10728–10731.

55

Wang, X.; Deng, Y.; Li, S.; Wang, G.; Qin, E.; Xu, X.; Tang, R.; Qin, C. Biomineralization-based virus shell-engineering: towards neutralization escape and tropism expansion. Adv. Healthc. Mater. 2012, 1, 443–449.

56

Shenton, W.; Douglas, T.; Young, M.; Stubbs, G.; Mann, S. Inorganic-organic nanotube composites from template mineralization of tobacco mosaic virus. Adv. Mater. 1999, 11, 253–256.

DOI
57

Wang, G.; Cao, R. -Y.; Chen, R.; Mo, L.; Han, J. -F.; Wang, X.; Xu, X.; Jiang, T.; Deng, Y. -Q.; Lyu, K.; Zhu, S. -Y.; Qin, E. D.; Tang, R.; Qin, C. -F. Rational design of thermostable vaccines by engineered peptide-induced virus self-biomineralization under physiological conditions. Proc. Natl. Acad. Sci. USA 2013, 110, 7619–7624.

58

Nam, K. T.; Kim, D. -W.; Yoo, P. J.; Chiang, C. -Y.; Meethong, N.; Hammond, P. T.; Chiang, Y. -M. and Belcher, A. M. Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes. Science 2006, 312, 885–888.

59

Ma, X. M.; Chen, H. F.; Yang, L.; Wang, K.; Guo, Y. M.; Yuan, L. Construction and potential applications of a functionalized cell with an intracellular mineral scaffold. Angew. Chem. Int. Ed. 2011, 50, 7414–7417.

60

Shamsaie, A.; Jonczyk, M.; Sturgis, J.; Robinson, J. P.; Irudayaraj, J. Intracellularly grown gold nanoparticles as potential surface-enhanced Raman scattering probes. J. Biomed. Opt. 2007, 12, 020502.

61

Liu, Z. M.; Hu, C. F.; Li, S. X.; Zhang, W.; Guo, Z. Y. Rapid intracellular growth of gold nanostructures assisted by functionalized graphene oxide and its application for surface-enhanced Raman spectroscopy. Anal. Chem. 2012, 84, 10338–10344.

62

Yu, J. H.; Patel, S. A.; Dickson, R. M. In vitro and intracellular production of peptide-encapsulated fluorescent silver nanoclusters. Angew. Chem. Int. Ed. 2007, 119, 2074–2076.

63

Douglas, T.; Young, M. Host-guest encapsulation of materials by assembled virus protein cages. Nature 1998, 393, 152–155.

64

Fan, T. X.; Chow, S. K.; Zhang, D. Biomorphic mineralization: from biology to materials. Prog. Mater. Sci. 2009, 54, 542–659.

65

Northcote, D.; Horne, R. The chemical composition and structure of the yeast cell wall. Biochem. J. 1952, 51, 232.

66

Addadi, L.; Moradian, J.; Shay, E.; Maroudas, N.; Weiner, S. A chemical model for the cooperation of sulfates and carboxylates in calcite crystal nucleation: relevance to biomineralization. Proc. Natl. Acad. Sci. USA 1987, 84, 2732–2736.

67

Tang, Z.; Wang, Y.; Podsiadlo, P.; Kotov, N. A. Biomedical applications of layer-by-layer assembly: From biomimetics to tissue engineering. Adv. Mater. 2006, 18, 3203–3224.

68

Ngankam, P.; Lavalle, P.; Voegel, J.; Szyk, L.; Decher, G.; Schaaf, P.; Cuisinier, F. Influence of polyelectrolyte multilayer films on calcium phosphate nucleation. J. Am. Chem. Soc. 2000, 122, 8998–9005.

69

Shchukin, D. G.; Sukhorukov, G. B.; Möhwald, H. Biomimetic fabrication of nanoengineered hydroxyapatite/polyelectrolyte composite shell. Chem. Mater. 2003, 15, 3947–3950.

70

Dhas, N. A.; Zaban, A.; Gedanken, A. Surface synthesis of zinc sulfide nanoparticles on silica microspheres: sonochemical preparation, characterization, and optical properties. Chem. Mater. 1999, 11, 806–813.

71

Langmuir, I. The role of attractive and repulsive forces in the formation of tactoids, thixotropic gels, protein crystals and coacervates. J. Chem. Phys. 2004, 6, 873–896.

72

Wang, X.; Deng, Y.; Shi, H.; Mei, Z.; Zhao, H.; Xiong, W.; Liu, P.; Zhao, Y.; Qin, C. and Tang, R. Functional single-virus-polyelectrolyte hybrids make large-scale applications of viral nanoparticles more efficient. Small 2010, 6, 351–354.

73

Cappello, J.; Crissman, J.; Dorman, M.; Mikolajczak, M.; Textor, G.; Marquet, M.; Ferrari, F. Genetic engineering of structural protein polymers. Biotechnol. Progr. 1990, 6, 198–202.

74

Roy, M. D.; Stanley, S. K.; Amis, E. J.; Becker, M. L. Identification of a highly specific hydroxyapatite-binding peptide using phage display. Adv. Mater. 2008, 20, 1830–1836.

75

Smith, G. P. Filamentous fusion phage: Novel expression vectors that display cloned antigens on the virion surface. Science 1985, 228, 1315–1317.

76

Hoess, R. H. Protein design and phage display. Chem. Rev. 2001, 101, 3205–3218.

77

Sanghvi, A. B.; Miller, K. P. -H.; Belcher, A. M.; Schmidt, C. E. Biomaterials functionalization using a novel peptide that selectively binds to a conducting polymer. Nat. Mater. 2005, 4, 496–502.

78

Serizawa, T.; Techawanitchai, P.; Matsuno, H. Isolation of peptides that can recognize syndiotactic polystyrene. ChemBioChem 2007, 8, 989–993.

79

Serizawa, T.; Sawada, T.; Kitayama, T. Peptide motifs that recognize differences in polymer-film surfaces. Angew. Chem. Int. Ed. 2007, 46, 723–726.

80

Lee, S. -K.; Yun, D. S.; Belcher, A. M. Cobalt ion mediated self-assembly of genetically engineered bacteriophage for biomimetic Co-Pt hybrid material. Biomacromolecules 2006, 7, 14–17.

81

Naik, R. R.; Stringer, S. J.; Agarwal, G.; Jones, S. E.; Stone, M. O. Biomimetic synthesis and patterning of silver nanoparticles. Nat. Mater. 2002, 1, 169–172.

82

Reiss, B. D.; Mao, C. B.; Solis, D. J.; Ryan, K. S.; Thomson, T.; Belcher, A. M. Biological routes to metal alloy ferromagnetic nanostructures. Nano Lett. 2004, 4, 1127–1132.

83

Tamerler, C.; Duman, M.; Oren, E. E.; Gungormus, M.; Xiong, X. R.; Kacar, T.; Parviz, B. A.; Sarikaya, M. Materials specificity and directed assembly of a gold-binding peptide. small 2006, 2, 1372–1378.

84

Raj, P. A.; Johnsson, M.; Levine, M. J.; Nancollas, G. H. Salivary statherin. Dependence on sequence, charge, hydrogen bonding potency, and helical conformation for adsorption to hydroxyapatite and inhibition of mineralization. J. Biol. Chem. 1992, 267, 5968–5976.

85

Schlesinger, D. H. and Hay, D. I. Complete covalent structure of statherin, a tyrosine-rich acidic peptide which inhibits calcium phosphate precipitation from human parotid saliva. J. Biol. Chem. 1977, 252, 1689–1695.

86

Kung, Y. -H.; Huang, S. -W.; Kuo, P. -H.; Kiang, D.; Ho, M. -S.; Liu, C. -C.; Yu, C. -K.; Su, I. -J.; Wang, J. -R. Introduction of a strong temperature-sensitive phenotype into enterovirus 71 by altering an amino acid of virus 3D polymerase. Virology 2010, 396, 1–9.

87

Mao, C. B.; Flynn, C. E.; Hayhurst, A.; Sweeney, R.; Qi, J.; Georgiou, G.; Iverson, B.; Belcher, A. M. Viral assembly of oriented quantum dot nanowires. Proc. Natl. Acad. Sci. USA 2003, 100, 6946–6951.

88

Gericke, M.; Pinches, A. Biological synthesis of metal nanoparticles. Hydrometallurgy 2006, 83, 132–140.

89

Narayanan, K. B.; Sakthivel, N. Biological synthesis of metal nanoparticles by microbes. Adv. Colloid Interfac. 2010, 156, 1–13.

90

Elfgang, C.; Eckert, R.; Lichtenberg-Fraté, H.; Butterweck, A.; Traub, O.; Klein, R. A.; Hülser, D. F.; Willecke, K. Specific permeability and selective formation of gap junction channels in connexin-transfected HeLa cells. J. Cell Biol. 1995, 129, 805–817.

91

Hoffman, J. D. Thermodynamic driving force in nucleation and growth processes. J. Chem. Phys. 1958, 29, 1192–1193.

92

Mandal, D.; Bolander, M. E.; Mukhopadhyay, D.; Sarkar, G.; Mukherjee, P. The use of microorganisms for the formation of metal nanoparticles and their application. Appl. Microbiol. Biot. 2006, 69, 485–492.

93

Lloyd, J. R. Microbial reduction of metals and radionuclides. FEMS Microbiol. Rev. 2003, 27, 411–425.

94

Zhao, X. X.; Fox, J. M.; Olson, N. H.; Baker, T. S.; Young, M. J. In vitro assembly of cowpea chlorotic mottle virus from coat protein expressed in Escherichia coli and in vitro-transcribed viral cDNA. Virology 1995, 207, 486–494.

95

Van der Graaf, M.; Van Mierlo, C. P. M.; Hemminga, M. A. Solution conformation of a peptide fragment representing a proposed RNA-binding site of a viral coat protein studied by two-dimensional NMR. Biochemistry 1991, 30, 5722–5727.

96

Speir, J. A.; Munshi, S.; Wang, G. J.; Baker, T. S.; Johnson, J. E. Structures of the native and swollen forms of cowpea chlorotic mottle virus determined by X-ray crystallography and cryo-electron microscopy. Structure 1995, 3, 63–78.

97

Johnson, J. E.; Speir, J. A. Quasi-equivalent viruses: A paradigm for protein assemblies. J. Mol. Biol. 1997, 269, 665–675.

98

Matthias, D. M.; Robertson, J.; Garrison, M. M.; Newland, S.; Nelson, C. Freezing temperatures in the vaccine cold chain: A systematic literature review. Vaccine 2007, 25, 3980–3986.

99

Vaught, J. B. Blood collection, shipment, processing, and storage. Cancer Eoudem. Biomar. 2006, 15, 1582–1584.

100

Frokjaer, S.; Otzen, D. Protein drug stability: A formulation challenge. Nat. Rev. Drug Discov. 2005, 4, 298–306.

101

Das, P. Revolutionary vaccine technology breaks the cold chain. Lancet Infect. Dis. 2004, 4, 719.

102

Chen, X.; Fernando, G. J.; Crichton, M. L.; Flaim, C.; Yukiko, S. R.; Fairmaid, E. J.; Corbett, H. J.; Primiero, C. A.; Ansaldo, A. B.; Frazer, I. H. et al. Improving the reach of vaccines to low-resource regions, with a needle-free vaccine delivery device and long-term thermostabilization. J. Control Release 2011, 152, 349–355.

103

Terry, C.; Dhawan, A.; Mitry, R. R.; Hughes, R. D. Cryopreservation of isolated human hepatocytes for transplantation: State of the art. Cryobiology 2006, 53, 149–159.

104

Schlehuber, L. D.; McFadyen, I. J.; Shu, Y.; Carignan, J.; Duprex, W. P.; Forsyth, W. R.; Ho, J. H.; Kitsos, C. M.; Lee, G. Y.; Levinson, D. A. et al. Towards ambient temperature-stable vaccines: The identification of thermally stabilizing liquid formulations for measles virus using an innovative high-throughput infectivity assay. Vaccine 2011, 29, 5031–5039.

105
Galazka, A.; Milstien, J.; Zaffran, M. Thermostability of vaccines: Global programme for Vaccines and Immunization; World Health Organization: Geneva, 1998.
106

Pathan, A. A.; Wilkinson, K. A.; Klenerman, P.; McShane, H.; Davidson, R. N.; Pasvol, G.; Hill, A. V. S.; Lalvani, A. Direct ex vivo analysis of antigen-specific IFN-Γ-secreting CD4 T cells in Mycobacterium tuberculosis-infected individuals: Associations with clinical disease state and effect of treatment. J. Immunol. 2001, 167, 5217–5225.

107

Yao, H. M.; Dao, M.; Imholt, T.; Huang, J.; Wheeler, K.; Bonilla, A.; Suresh, S.; Ortiz, C. Protection mechanisms of the iron-plated armor of a deep-sea hydrothermal vent gastropod. Proc. Natl. Acad. Sci. USA 2010, 107, 987–992.

108

Frokjaer, S.; Otzen, D. E. Protein drug stability: A formulation challenge. Nat. Rev. Drug Discov. 2005, 4, 298–306.

109

Madronich, S.; McKenzie, R. L.; Björn, L. O.; Caldwell, M. M. Changes in biologically active ultraviolet radiation reaching the Earth's surface. J. Photoch. Photobio. B 1998, 46, 5–19.

110

Blankenship, R. E.; Tiede, D. M.; Barber, J.; Brudvig, G. W.; Fleming, G.; Ghirardi, M.; Gunner, M. R.; Junge, W.; Kramer, D. M.; Melis, A. et al. Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement. Science 2011, 332, 805–809.

111

Chen, T. H. H.; Murata, N. Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes. Curr. Opin. Plant. Biol. 2002, 5, 250–257.

112

Long, S. P.; Humphries, S.; Falkowski, P. G. Photoinhibition of photosynthesis in nature. Annu. Rev. Plant Biol. 1994, 45, 633–662.

113

Powles, S. B. Photoinhibition of photosynthesis induced by visible light. Annu. Rev. Plant Phsiol. 1984, 35, 15–44.

114

Gellman, S. H. Introduction: Molecular recognition. Chem. Rev. 1997, 97, 1231–1232.

115

Kieffer, B. L. Recent advances in molecular recognition and signal transduction of active peptides: Receptors for opioid peptides. Cell. Mol. Neurobiol. 1995, 15, 615–635.

116

Iqbal, S. S.; Mayo, M. W.; Bruno, J. G.; Bronk, B. V.; Batt, C. A.; Chambers, J. P. A review of molecular recognition technologies for detection of biological threat agents. Biosens. Bioelectron. 2000, 15, 549–578.

117

Wu, Z. J.; Asokan, A.; Samulski, R. J. Adeno-associated virus serotypes: Vector toolkit for human gene therapy. Mol. Ther. 2006, 14, 316–327.

118

Blömer, U.; Naldini, L.; Kafri, T.; Trono, D.; Verma, I. M.; Gage, F. H. Highly efficient and sustained gene transfer in adult neurons with a lentivirus vector. J. Virol. 1997, 71, 6641–6649.

119

Thomas, C. E.; Ehrhardt, A.; Kay, M. A. Progress and problems with the use of viral vectors for gene therapy. Nat. Rev. Genet. 2003, 4, 346–358.

120

Bewley, M. C.; Springer, K.; Zhang, Y. -B.; Freimuth, P.; Flanagan, J. M. Structural analysis of the mechanism of adenovirus binding to its human cellular receptor, CAR. Science 1999, 286, 1579–1583.

121

Siddik, Z. H. Cisplatin: Mode of cytotoxic action and molecular basis of resistance. Oncogene 2003, 22, 7265–7279.

122

Ishida, S.; Lee, J.; Thiele, D. J.; Herskowitz, I. Uptake of the anticancer drug cisplatin mediated by the copper transporter Ctr1 in yeast and mammals. Proc. Natl. Acad. Sci. USA 2002, 99, 14298–14302.

123

Chen, W.; Xiao, Y.; Liu, X. Y.; Chen, Y. H.; Zhang, J. J.; Xu, X. R.; Tang, R. K. Overcoming cisplatin resistance in chemotherapy by biomineralization. Chem. Comm. 2013, 49, 4932–4934.

124

Murphy, R. F.; Powers, S.; Cantor, C. R. Endosome pH measured in single cells by dual fluorescence flow cytometry: Rapid acidification of insulin to pH 6. J. Cell Biol. 1984, 98, 1757–1762.

125

Helmlinger, G.; Yuan, F.; Dellian, M.; Jain, R. K. Interstitial pH and pO2 gradients in solid tumors in vivo: High-resolution measurements reveal a lack of correlation. Nat. Med. 1997, 3, 177–182.

126

Gasch, A. P.; Werner-Washburne, M. The genomics of yeast responses to environmental stress and starvation. Funct. integr. genomic. 2002, 2, 181–192.

127

Gasch, A. P.; Spellman, P. T.; Kao, C. M.; Carmel-Harel, O.; Eisen, M. B.; Storz, G.; Botstein, D.; Brown, P. O. Genomic expression programs in the response of yeast cells to environmental changes. Mol. biol. cell 2000, 11, 4241–4257.

128

Wang, B.; Liu, P.; Tang, R. K. Cellular shellization: Surface engineering gives cells an exterior. BioEssays 2010, 32, 698–708.

129

Fleming, D. O.; Hunt, D. L. Biological Safety: Principles and Practices; ASM Press: 2006.

DOI
130

Shimomura, O.; Shimomura, A. EDTA-binding and acylation of the Ca2+-sensitive photoprotein aequorin. FEBS Lett. 1982, 138, 201–204.

131

Chen, Y.; Gu, W. J.; Pan, H. H.; Jiang, S. Q.; Tang, R. K. Stabilizing amorphous calcium phosphate phase by citrate adsorption. CrystEngComm 2014, 16, 1864–1867.

132

Copp, D. Simple and precise micromethod for EDTA titration of calcium. J. Lab. Clin. Med. 1963, 61, 1029–1037.

133

Motskin, M.; Wright, D. M.; Muller, K.; Kyle, N.; Gard, T. G.; Porter, A. E.; Skepper, J. N. Hydroxyapatite nano and microparticles: Correlation of particle properties with cytotoxicity and biostability. Biomaterials 2009, 30, 3307–3317.

134

Jen, A. C.; Wake, M. C.; Mikos, A. G. Review: Hydrogels for cell immobilization. Biotechnol. Bioeng. 1996, 50, 357–364.

DOI
135

Carturan, G.; Dal Toso, R.; Boninsegna, S.; Dal Monte, R. Encapsulation of functional cells by sol-gel silica: Actual progress and perspectives for cell therapy. J. Mater. Chem. 2004, 14, 2087–2098.

136

Hoffman, A. S. Hydrogels for biomedical applications. Adv. Drug Deliver. Rev. 2002, 54, 3–12.

137

Adler, J. Chemotaxis in bacteria. Science 1966, 153, 708–716.

Publication history
Copyright
Acknowledgements

Publication history

Received: 26 March 2014
Revised: 16 May 2014
Accepted: 04 June 2014
Published: 03 September 2014
Issue date: October 2014

Copyright

© Tsinghua University Press and Springer‐Verlag Berlin Heidelberg 2014

Acknowledgements

Acknowledgements

The authors greatly thank Xiaoyu Wang, Ben Wang and Wei Xiong for providing editable graphic materials. This study was supported by the Fundamental Research Funds for the Central Universities of China and the Natural Science Foundation of China (No. 91127003).

Return