Journal Home > Volume 7 , Issue 9

Conductive polymer coatings can boost the power storage capacity of lithium-sulfur batteries. We report here on the design and preparation-by combining a facile and green chemical deposition method with an oxidative polymerization approach-of polyaniline (PANI)-modified cetyltrimethylammonium bromide (CTAB)-graphene oxide (GO)-sulfur (S) nanocomposites with significantly enhanced performance in lithium-sulfur batteries. Such conductive polymer modified CTAB-GO-S nanocomposites as sulfur cathode materials can deliver high specific discharge capacities and long-term cycling performance, i.e., ~970 mAh·g-1 at 0.2 C and ~715 mAh·g-1 after 300 cycles, ~820 mAh·g-1 at 0.5 C and ~670 mAh·g-1 after 500 cycles, ~770 mAh·g-1 at 1 C and ~570 mAh·g-1 after 500 cycles. The capacity decay was as low as 0.036% per cycle at 0.5 C, and 0.051% per cycle at 1 C. Under the same condition, batteries using PANI-modified CTAB-GO-S as cathodes exhibited higher specific capacity and higher average coulombic efficiency compared with CTAB-decorated GO-S and GO-S nanocomposites. The improved performance can be attributed to the lower charge transfer resistance and the alleviated dissolution of polysulfides in the PANImodified CTAB-GO-S cathodes.


menu
Abstract
Full text
Outline
About this article

Polyaniline-modified cetyltrimethylammonium bromide–graphene oxide–sulfur nanocomposites with enhanced performance for lithium–sulfur batteries

Show Author's information Yongcai Qiu§Wanfei Li§Guizhu LiYuan HouLisha ZhouHongfei LiMeinan LiuFangmin YeXiaowei YangYuegang Zhang( )
i-LABSuzhou Institute of Nano-Tech and Nano-BionicsChinese Academy of SciencesSuzhou215123China

§These authors contributed equally to this work.

Abstract

Conductive polymer coatings can boost the power storage capacity of lithium-sulfur batteries. We report here on the design and preparation-by combining a facile and green chemical deposition method with an oxidative polymerization approach-of polyaniline (PANI)-modified cetyltrimethylammonium bromide (CTAB)-graphene oxide (GO)-sulfur (S) nanocomposites with significantly enhanced performance in lithium-sulfur batteries. Such conductive polymer modified CTAB-GO-S nanocomposites as sulfur cathode materials can deliver high specific discharge capacities and long-term cycling performance, i.e., ~970 mAh·g-1 at 0.2 C and ~715 mAh·g-1 after 300 cycles, ~820 mAh·g-1 at 0.5 C and ~670 mAh·g-1 after 500 cycles, ~770 mAh·g-1 at 1 C and ~570 mAh·g-1 after 500 cycles. The capacity decay was as low as 0.036% per cycle at 0.5 C, and 0.051% per cycle at 1 C. Under the same condition, batteries using PANI-modified CTAB-GO-S as cathodes exhibited higher specific capacity and higher average coulombic efficiency compared with CTAB-decorated GO-S and GO-S nanocomposites. The improved performance can be attributed to the lower charge transfer resistance and the alleviated dissolution of polysulfides in the PANImodified CTAB-GO-S cathodes.

Keywords: lithium-sulfur batteries, polyaniline, graphene oxide-sulfur, long-term cycling

References(37)

1

Song, M. K.; Cairns, E. J.; Zhang, Y. G. Lithium/sulfur batteries with high specific energy: Old challenges and new opportunities. Nanoscale 2013, 5, 2186–2204.

2

Dong, Q. F.; Wang, C.; Zheng, M. S. Research progress and prospects of lithium sulfur batteries. Prog. Chem. 2011, 23, 533–539.

3

Evers, S.; Nazar, L. F. New approaches for high energy density lithium-sulfur battery cathodes. Acc. Chem. Res. 2013, 46, 1135–1143.

4

Manthiram, A.; Fu, Y. Z.; Su, Y. S. Challenges and prospects of lithium-sulfur batteries. Acc. Chem. Res. 2013, 46, 1125–1134.

5

Kim, J.; Lee, D. J.; Jung, H. G.; Sun, Y. K.; Hassoun, J.; Scrosati, B. An advanced lithium-sulfur battery. Adv. Funct. Mater. 2013, 23, 1076–1080.

6

Yin, Y. X.; Xin, S.; Guo, Y. G.; Wan, L. J. Lithium-sulfur batteries: Electrochemistry, materials, and prospects. Angew. Chem. Int. Ed. 2013, 52, 13186–13200.

7

Wang, J. Z.; Lu, L.; Shi, D. Q.; Tandiono, R.; Wang, Z. X.; Konstantinov, K.; Liu, H. K. A conductive polypyrrole-coated, sulfur-carbon nanotube composite for use in lithiumsulfur batteries. ChemPlusChem 2013, 78, 318–324.

8

Zheng, G. Y.; Zhang, Q. F.; Cha, J. J.; Yang, Y.; Li, W. Y.; Seh, Z. W.; Cui, Y. Amphiphilic surface modification of hollow carbon nanofibers for improved cycle life of lithium sulfur batteries. Nano Lett. 2013, 13, 1265–1270.

9

Zhou, W. D.; Yu, Y. C.; Chen, H.; DiSalvo, F. J.; Abruna, H. D. Yolk-shell structure of polyaniline-coated sulfur for lithium-sulfur batteries. J. Am. Chem. Soc. 2013, 135, 16736–16743.

10

Guo, J. C.; Yang, Z. C.; Yu, Y. C.; Abruna, H. D.; Archer, L. A. Lithium-sulfur battery cathode enabled by lithium-nitrile interaction. J. Am. Chem. Soc. 2013, 135, 763–767.

11

Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J. M. Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 2012, 11, 19–29.

12

Mikhaylik, Y. V.; Akridge, J. R. Polysulfide shuttle study in the Li/S battery system. J. Electrochem. Soc. 2004, 151, A1969–A1976.

13

Barchasz, C.; Lepretre, J. C.; Alloin, F.; Patoux, S. New insights into the limiting parameters of the Li/S rechargeable cell. J. Power Sources 2012, 199, 322–330.

14

Ji, X. L.; Lee, K. T.; Nazar, L. F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat. Mater. 2009, 8, 500–506.

15

Sun, H.; Xu, G. L.; Xu, Y. F.; Sun, S. G.; Zhang, X. F.; Qiu, Y. C.; Yang, S. H. A composite material of uniformly dispersed sulfur on reduced graphene oxide: Aqueous one-pot synthesis, characterization and excellent performance as the cathode in rechargeable lithium-sulfur batteries. Nano. Res. 2012, 5, 726–738.

16

Zhao, C. Y.; Liu, L. J.; Zhao, H. L.; Krall, A.; Wen, Z. H.; Chen, J. H.; Hurley, P.; Jiang, J. W.; Li, Y. Sulfur-infiltrated porous carbon microspheres with controllable multi-modal pore size distribution for high energy lithium-sulfur batteries. Nanoscale 2014, 6, 882–888.

17

Zhao, S. R.; Li, C. M.; Wang, W. K.; Zhang, H.; Gao, M. Y.; Xiong, X.; Wang, A. B.; Yuan, K. G.; Huang, Y. Q.; Wang, F. A novel porous nanocomposite of sulfur/carbon obtained from fish scales for lithium-sulfur batteries. J. Mater. Chem. A 2013, 1, 3334–3339.

18

Zhang, C. F.; Wu, H. B.; Yuan, C. Z.; Guo, Z. P.; Lou, X. W. Confining sulfur in double-shelled hollow carbon spheres for lithium-sulfur batteries. Angew. Chem. Int. Ed. 2012, 51, 9592–9595.

19

Wang, H. L.; Yang, Y.; Liang, Y. Y.; Robinson, J. T.; Li, Y. G.; Jackson, A.; Cui, Y.; Dai, H. J. Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability. Nano Lett. 2011, 11, 2644–2647.

20

Wei, S. C.; Zhang, H.; Huang, Y. Q.; Wang, W. K.; Xia, Y. Z.; Yu, Z. B. Pig bone derived hierarchical porous carbon and its enhanced cycling performance of lithium-sulfur batteries. Energ. Environ. Sci. 2011, 4, 736–740.

21

Jayaprakash, N.; Shen, J.; Moganty, S. S.; Corona, A.; Archer, L. A. Porous hollow carbon@sulfur composites for high-power lithium-sulfur batteries. Angew. Chem. Int. Ed. 2011, 50, 5904–5908.

22

Schuster, J.; He, G.; Mandlmeier, B.; Yim, T.; Lee, K. T.; Bein, T.; Nazar, L. F. Spherical ordered mesoporous carbon nanoparticles with high porosity for lithium-sulfur batteries. Angew. Chem. Int. Ed. 2012, 51, 3591–3595.

23

Li, W. Y.; Zheng, G. Y.; Yang, Y.; Seh, Z. W.; Liu, N.; Cui, Y. High-performance hollow sulfur nanostructured battery cathode through a scalable, room temperature, one-step, bottom-up approach. Proc. Natl. Acad. Sci. USA 2013, 110, 7148–7153.

24

Seh, Z. W.; Li, W. Y.; Cha, J. J.; Zheng, G. Y.; Yang, Y.; McDowell, M. T.; Hsu, P. C.; Cui, Y. Sulphur-TiO2 yolk-shell nanoarchitecture with internal void space for long-cycle lithium-sulphur batteries. Nat. Commun. 2013, 4, 1331.

25

Zhang, Y. G.; Bakenov, Z.; Zhao, Y.; Konarov, A.; The, N. L. D.; Malik, M.; Paron, T.; Chen, P. One-step synthesis of branched sulfur/polypyrrole nanocomposite cathode for lithium rechargeable batteries. J. Power Sources 2012, 208, 1–8.

26

Song, M. K.; Zhang, Y. G.; Cairns, E. J. A long-life, highrate lithium/sulfur cell: A multifaceted approach to enhancing cell performance. Nano Lett. 2013, 13, 5891–5899.

27

Ji, L. W.; Rao, M. M.; Zheng, H. M.; Zhang, L.; Li, Y. C.; Duan, W. H.; Guo, J. H.; Cairns, E. J.; Zhang, Y. G. Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells. J. Am. Chem. Soc. 2011, 133, 18522–18525.

28

Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.

29

Hummers, W. S.; Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339–1339.

30

Xu, Y. X.; Bai, H.; Lu, G. W.; Li, C.; Shi, G. Q. Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. J. Am. Chem. Soc. 2008, 130, 5856–5860.

31

Qiu, Y. C.; Yan, K. Y.; Yang, S. H.; Jin, L. M.; Deng, H.; Li, W. S. Synthesis of size-tunable anatase TiO2 nanospindles and their assembly into anatase@titanium oxynitride/titanium nitride-graphene nanocomposites for rechargeable lithium ion batteries with high cycling performance. ACS Nano 2010, 4, 6515–6526.

32

Buqa, H.; Holzapfel, M.; Krumeich, F.; Veit, C.; Novak, P. Study of styrene butadiene rubber and sodium methyl cellulose as binder for negative electrodes in lithium-ion batteries. J. Power Sources 2006, 161, 617–622.

33

Chou, S. L.; Gao, X. W.; Wang, J. Z.; Wexler, D.; Wang, Z. X.; Chen, L. Q.; Liu, H. K. Tin/polypyrrole composite anode using sodium carboxymethyl cellulose binder for lithium-ion batteries. Dalton. Trans. 2011, 40, 12801–12807.

34

Zu, C. X.; Manthiram, A. Hydroxylated graphene-sulfur nanocomposites for high-rate lithium-sulfur batteries. Adv. Energy Mater. 2013, 3, 1008–1012.

35

Wang, J. L.; Yang, J.; Xie, J. Y.; Xu, N. X. A novel conductive polymer-sulfur composite cathode material for rechargeable lithium batteries. Adv. Mater. 2002, 14, 963–967.

DOI
36

Yang, Y.; Yu, G. H.; Cha, J. J.; Wu, H.; Vosgueritchian, M.; Yao, Y.; Bao, Z. A.; Cui, Y. Improving the performance of lithium-sulfur batteries by conductive polymer coating. ACS Nano 2011, 5, 9187–9193.

37

Wang, M. J.; Wang, W. K.; Wang, A. B.; Yuan, K. G.; Miao, L. X.; Zhang, X. L.; Huang, Y. Q.; Yu, Z. B.; Qiu, J. Y. A multi-core-shell structured composite cathode material with a conductive polymer network for Li-S batteries. Chem. Commun. 2013, 49, 10263–10265.

Publication history
Copyright
Acknowledgements

Publication history

Received: 10 April 2014
Revised: 13 May 2014
Accepted: 20 May 2014
Published: 18 July 2014
Issue date: September 2014

Copyright

© Tsinghua University Press and Springer‐Verlag Berlin Heidelberg 2014

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21303251), China Postdoctoral Science Foundation (No. 2014M550314), the Natural Science Foundation of Jiangsu Province (No. BK20140383) and Suzhou Science and Technology Development Program (No. ZXG2013002).

Return