Journal Home > Volume 7 , Issue 9

Detection of circulating tumor cells (CTCs) plays an important role in cancer diagnosis and prognosis. In this study, aptamer-conjugated upconversion nanoparticles (UCNPs) are used for the first time as nanoprobes to recognize tumor cells, which are then enriched by attaching with magnetic nanoparticles (MNPs) and placing in the presence of a magnetic field. Owing to the autofluorescencefree nature of upconversion luminescence imaging, as well as the use of magnetic separation to further reduce background signals, our technique allows for highly sensitive detection and collection of small numbers of tumor cells spiked into healthy blood samples, and shows promise for CTC detection in medical diagnostics.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Aptamer-conjugated upconversion nanoprobes assisted by magnetic separation for effective isolation and sensitive detection of circulating tumor cells

Show Author's information Shuai Fang§Chao Wang§Jian XiangLiang ChengXuejiao SongLigeng XuRui Peng( )Zhuang Liu( )
Institute of Functional Nano & Soft Materials (FUNSOM)Collaborative Innovation Center of Suzhou Nano Science and TechnologySoochow UniversitySuzhouJiangsu215123China

§These two authors contributed equally to this work.

Abstract

Detection of circulating tumor cells (CTCs) plays an important role in cancer diagnosis and prognosis. In this study, aptamer-conjugated upconversion nanoparticles (UCNPs) are used for the first time as nanoprobes to recognize tumor cells, which are then enriched by attaching with magnetic nanoparticles (MNPs) and placing in the presence of a magnetic field. Owing to the autofluorescencefree nature of upconversion luminescence imaging, as well as the use of magnetic separation to further reduce background signals, our technique allows for highly sensitive detection and collection of small numbers of tumor cells spiked into healthy blood samples, and shows promise for CTC detection in medical diagnostics.

Keywords: aptamer, magnetic nanoparticles, upconversion nanoparticles, circulating tumar cell (CTC) detection

References(36)

1

Ghossein, R. A.; Carusone, L.; Bhattacharya, S. Review: Polymerase chain reaction detection of micrometastases and circulating tumor cells: Application to melanoma, prostate, and thyroid carcinomas. Diagn. Mol. Pathol. 1999, 8, 165–175.

2

Wittekind, C.; Neid, M. Cancer invasion and metastasis. Oncology 2005, 69 (Suppl. 1), 14–16.

3

Alunni-Fabbroni, M.; Sandri, M. T. Circulating tumour cells in clinical practice: Methods of detection and possible characterization. Methods 2010, 50, 289–297.

4

Allard, W. J.; Matera, J.; Miller, M. C.; Repollet, M.; Connelly, M. C.; Rao, C.; Tibbe, A. G. J.; Uhr, J. W.; Terstappen, L. W. M. M. Tumor cells circulate in the peripheral blood of all major carcinomas but not in healthy subjects or patients with nonmalignant diseases. Clin. Cancer Res. 2004, 10, 6897–6904.

5

Maltez-da Costa, M.; de la Escosura-Muñiz, A.; Nogués, C.; Barrios, L.; Ibáñez, E.; Merkoci, A. Simple monitoring of cancer cells using nanoparticles. Nano Lett. 2012, 12, 4164–4171.

6

Galanzha, E. I.; Shashkov, E. V.; Kelly, T.; Kim, J. W.; Yang, L.; Zharov, V. P. In vivo magnetic enrichment and multiplex photoacoustic detection of circulating tumour cells. Nat. Nanotechnol. 2009, 4, 855–860.

7

Gazouli, M.; Lyberopoulou, A.; Pericleous, P.; Rizos, S.; Aravantinos, G.; Nikiteas, N.; Anagnou, N. P.; Efstathopoulos, E. P. Development of a quantum-dot-labelled magnetic immunoassay method for circulating colorectal cancer cell detection. World J. Gastroenterol. 2012, 18, 4419–4426.

8

Zieglschmid, V.; Hollmann, C.; Böcher, O. Detection of disseminated tumor cells in peripheral blood. Crit. Rev. Clin. Lab. Sci. 2005, 42, 155–196.

9

Park, G. S.; Kwon, H.; Kwak, D. W.; Park, S. Y.; Kim, M.; Lee, J. H.; Han, H.; Heo, S.; Li, X. S.; Lee, J. H. et al. Full surface embedding of gold clusters on silicon nanowires for efficient capture and photothermal therapy of circulating tumor cells. Nano Lett. 2012, 12, 1638–1642.

10

Zhao, L. B.; Lu, Y. T.; Li, F. Q.; Wu, K.; Hou, S.; Yu, J. H.; Shen, Q. L.; Wu, D. X.; Song, M.; Ouyang, W. H. et al. High-purity prostate circulating tumor cell isolation by a polymer nanofiber-embedded microchip for whole exome sequencing. Adv. Mater. 2013, 25, 2897–2902.

11

Chen, L.; Liu, X. L.; Su, B.; Li, J.; Jiang, L.; Han, D.; Wang, S. T. Aptamer-mediated efficient capture and release of T lymphocytes on nanostructured surfaces. Adv. Mater. 2011, 23, 4376–4380.

12

Wang, S. T.; Liu, K.; Liu, J.; Yu, Z. T. F.; Xu, X. W.; Zhao, L. B.; Lee, T.; Lee, E. K.; Reiss, J.; Lee, Y. K. et al. Highly efficient capture of circulating tumor cells by using nanostructured silicon substrates with integrated chaotic micromixers. Angew. Chem. Int. Ed. 2011, 50, 3084–3088.

13

Wu, L.; Wang, J. S.; Ren, J. S.; Qu, X. G. Ultrasensitive telomerase activity detection in circulating tumor cells based on DNA metallization and sharp solid-state electrochemical techniques. Adv. Funct. Mater. 2014, 24, 2727–2733.

14

Chang, Y. S.; di Tomaso, E.; McDonald, D. M.; Jones, R.; Jain, R. K.; Munn, L. L. Mosaic blood vessels in tumors: Frequency of cancer cells in contact with flowing blood. Proc. Natl. Acad. Sci. USA 2000, 97, 14608–14613.

15

Auzel, F. Upconversion and anti-stokes processes with f and d ions in solids. Chem. Rev. 2004, 104, 139–174.

16

Deng, M. L.; Ma, Y. X.; Huang, S.; Hu, G. F.; Wang, L. Y. Monodisperse upconversion NaYF4 nanocrystals: Syntheses and bioapplications. Nano Res. 2011, 4, 685–694.

17

Idris, N. M.; Gnanasammandhan, M. K.; Zhang, J.; Ho, P. C.; Mahendran, R.; Zhang, Y. In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers. Nat. Med. 2012, 18, 1580–1585.

18

Wang, C.; Cheng, L.; Liu, Z. Drug delivery with upconversion nanoparticles for multi-functional targeted cancer cell imaging and therapy. Biomaterials. 2011, 32, 1110–1120.

19

Cheng, L.; Yang, K.; Zhang, S.; Shao, M. W.; Lee, S.; Liu, Z. Highly-sensitive multiplexed in vivo imaging using pegylated upconversion nanoparticles. Nano Res. 2010, 3, 722–732.

20

Yang, Y. M.; Shao, Q.; Deng, R. R.; Wang, C.; Teng, X.; Cheng, K.; Cheng, Z.; Huang, L.; Liu, Z.; Liu, X. G. In vitro and in vivo uncaging and bioluminescence imaging by using photocaged upconversion nanoparticles. Angew. Chem. Int. Ed. 2012, 51, 3125–3129.

21

Zhou, L.; Li, Z. H.; Liu, Z.; Yin, M. L.; Ren, J. S.; Qu, X. G. One-step nucleotide-programmed growth of porous upconversion nanoparticles: Application to cell labeling and drug delivery. Nanoscale. 2014, 6, 1445–1452.

22

Yang, Y. Upconversion nanophosphors for use in bioimaging, therapy, drug delivery and bioassays. Michromchim. Acta 2014, 181, 263–294.

23
Chen, F.; Bu, W. B.; Cai, W. B.; Shi, J. L. Engineering upconversion nanoparticles for biomedical imaging and therapy. In Engineering in Translational Medicine. Cai, W., Eds.; Springer: London, 2014; pp. 585–609.https://doi.org/10.1007/978-1-4471-4372-7_22
DOI
24

Xiong, L. Q.; Chen, Z. G.; Tian, Q. W.; Cao, T. Y.; Xu, C. J.; Li, F. Y. High contrast upconversion luminescence targeted imaging in vivo using peptide-labeled nanophosphors. Anal. Chem. 2009, 81, 8687–8694.

25

He, L.; Feng, L. Z.; Cheng, L.; Liu, Y. M.; Li, Z. W.; Peng, R.; Li, Y. G.; Guo, L.; Liu, Z. Multilayer dual-polymer-coated upconversion nanoparticles for multimodal imaging and serum-enhanced gene delivery. ACS Appl. Mater. Interface 2013, 5, 10381–10388.

26
Zvyagin, A. V.; Song, Z.; Nadort, A.; Sreenivasan, V. K. A.; Deyev, S. M. Luminescent nanomaterials for molecular-specific cellular imaging. In Handbook of Nano-Optics and Nanophotonics. Ohtsu, M., Eds.; Springer: Berlin Heidelberg, 2013; pp. 563–596.https://doi.org/10.1007/978-3-642-31066-9_15
DOI
27

Wang, C.; Cheng, L.; Xu, H.; Liu, Z. Towards whole-body imaging at the single cell level using ultra-sensitive stem cell labeling with oligo-arginine modified upconversion nanoparticles. Biomaterials. 2012, 33, 4872–4881.

28

Cheng, L.; Wang, C.; Ma, X. X.; Wang, Q. L.; Cheng, Y.; Wang, H.; Li, Y. G.; Liu, Z. Multifunctional upconversion nanoparticles for dual-modal imaging-guided stem cell therapy under remote magnetic control. Adv. Funct. Mater. 2013, 23, 272–280.

29

Liu, C. H.; Wang, H.; Li, X.; Chen, D. P. Monodisperse, size-tunable and highly efficient β-NaYF4: Yb, Er (Tm) up-conversion luminescent nanospheres: Controllable synthesis and their surface modifications. J. Mater. Chem. 2009, 19, 3546–3553.

30

Prencipe, G.; Tabakman, S. M.; Welsher, K.; Liu, Z.; Goodwin, A. P.; Zhang, L.; Henry, J.; Dai, H. PEG branched polymer for functionalization of nanomaterials with ultralong blood circulation. J. Am. Chem. Soc. 2009, 131, 4783–4787.

31

Wang, C.; Ma, X. X.; Ye, S. Q.; Cheng, L.; Yang, K.; Guo, L.; Li, C. H.; Li, Y. G.; Liu, Z. Protamine functionalized single-walled carbon nanotubes for stem cell labeling and in vivo Raman/magnetic resonance/photoacoustic triple-modal imaging. Adv. Funct. Mater. 2012, 22, 2363–2375.

32

Sun, S. H.; Zeng, H.; Robinson, D. B.; Raoux, S.; Rice, P. M.; Wang, S. X.; Li, G. X. Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles. J. Am. Chem. Soc. 2004, 126, 273–279.

33

Lee, H.; Yoon, T. J.; Figueiredo, J. L.; Swirski, F. K.; Weissleder, R. Rapid detection and profiling of cancer cells in fine-needle aspirates. Proc. Natl. Acad. Sci. USA 2009, 106, 12459–12464.

34

Smith, J. E.; Medley, C. D.; Tang, Z. W.; Shangguan, D.; Lofton, C.; Tan, W. H. Aptamer-conjugated nanoparticles for the collection and detection of multiple cancer cells. Anal. Chem. 2007, 79, 3075–3082.

35

Herr, J. K.; Smith, J. E.; Medley, C. D.; Shangguan, D.; Tan, W. H. Aptamer-conjugated nanoparticles for selective collection and detection of cancer cells. Anal. Chem. 2006, 78, 2918–2924.

36

Shangguan, D.; Cao, Z. H.; Meng, L.; Mallikaratchy, P.; Sefah, K.; Wang, H.; Li, Y.; Tan, W. H. Cell-specific aptamer probes for membrane protein elucidation in cancer cells. J. Proteome Res. 2008, 7, 2133–2139.

File
12274_2014_497_MOESM1_ESM.pdf (497.6 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 15 April 2014
Revised: 09 May 2014
Accepted: 12 May 2014
Published: 22 August 2014
Issue date: September 2014

Copyright

© Tsinghua University Press and Springer‐Verlag Berlin Heidelberg 2014

Acknowledgements

Acknowledgements

This work is supported by the National Basic Research Program of China (973 Program) (Nos. 2012CB932600 and 2011CB911000), the National Natural Science Foundation of China (Nos. 51222203, 51302180 and 31300824), the China Postdoctoral Science Foundation (Nos. 2013M530267 and 2013M531400), and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Return