Journal Home > Volume 7 , Issue 9

A series of SrTiO3 polyhedral submicro/nanocrystals with systematic morphology evolution from cubic to edge-truncated cubic and truncated rhombic dodecahedra have been synthesized by using a series of alcohol molecules with different acidities as surfactants. The concentration and pKa value of the alcohols both play important roles in determining the size and shape of the SrTiO3 polyhedral submicro/nanocrystals. The adsorption energy of alcohol molecules on SrTiO3 {110} facets depends on their pKa values, which are therefore critical for morphology control. Using the same strategy, a series of BaTiO3 polyhedral submicro/nanocrystals with systematic morphology evolution have also been successfully prepared.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Shape-controlled growth of SrTiO3 polyhedral submicro/nanocrystals

Show Author's information Lingqing Dong1,2,§Hui Shi3,§Kui Cheng1Qi Wang3Wenjian Weng1,4( )Weiqiang Han1,2,5( )
Department of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and ApplicationsZhejiang UniversityHangzhou310027China
Ningbo Institute of Materials Technology & EngineeringChinese Academy of SciencesNingbo315210China
Soft Matter Research Center and Department of ChemistryZhejiang UniversityHangzhou310027China
Shanghai Institute of CeramicsChinese Academy of SciencesShanghai200050China
School of Physical Science and TechnologyShanghaiTech UniversityShanghai200031China

§ These authors contributed equally to this work.

Abstract

A series of SrTiO3 polyhedral submicro/nanocrystals with systematic morphology evolution from cubic to edge-truncated cubic and truncated rhombic dodecahedra have been synthesized by using a series of alcohol molecules with different acidities as surfactants. The concentration and pKa value of the alcohols both play important roles in determining the size and shape of the SrTiO3 polyhedral submicro/nanocrystals. The adsorption energy of alcohol molecules on SrTiO3 {110} facets depends on their pKa values, which are therefore critical for morphology control. Using the same strategy, a series of BaTiO3 polyhedral submicro/nanocrystals with systematic morphology evolution have also been successfully prepared.

Keywords: BaTiO3, SrTiO3, shape-controlled growth, alcohol molecules, pKa values

References(29)

1

Peng, X. G.; Manna, L.; Yang, W. D.; Wickham, J.; Scher, E.; Kadavanich, A.; Alivisatos, A. P. Shape control of CdSe nanocrystals. Nature 2000, 404, 59-61.

2

Sun, Y. G.; Xia, Y. N. Shape-controlled synthesis of gold and silver nanoparticles. Science 2002, 298, 2176-2179.

3

Yang, H. G.; Sun, C. H.; Qiao, S. Z.; Zou, J.; Liu, G.; Smith, S. C.; Cheng, H. M.; Lu, G. Q. Anatase TiO2 single crystals with a large percentage of reactive facets. Nature 2008, 453, 638-642.

4

Tian, N.; Zhou, Z. Y.; Sun, S. G.; Ding, Y.; Wang, Z. L. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science 2007, 316, 732-735.

5

Habas, S. E.; Lee, H.; Radmilovic, V.; Somorjai, G. A.; Yang, P. Shaping binary metal nanocrystals through epitaxial seeded growth. Nat. Mater. 2007, 6, 692-697.

6

Huang, M. H.; Lin, P. H. Shape-controlled synthesis of polyhedral nanocrystals and their facet-dependent properties. Adv. Funct. Mater. 2012, 22, 14-24.

7

Rabuffetti, F. A.; Kim, H. S.; Enterkin, J. A.; Wang, Y. M.; Lanier, C. H.; Marks, L. D.; Poeppelmeier, K. R.; Stair, P. C. Synthesis-dependent first-order Raman scattering in SrTiO3 nanocubes at room temperature. Chem. Mater. 2008, 20, 5628-5635.

8

Viswanath, B.; Kundu, P.; HaIder, A.; Ravishankar, N. Mechanistic aspects of shape selection and symmetry breaking during nanostructure growth by wet chemical methods. J. Phys. Chem. C 2009, 113, 16866-16883.

9

Chiu, C. Y.; Li, Y. J.; Ruan, L. Y.; Ye, X. C.; Murray, C. B.; Huang, Y. Platinum nanocrystals selectively shaped using facet-specific peptide sequences. Nat. Chem. 2011, 3, 393-399.

10

Lee, K.; Kim, M.; Kim, H. Catalytic nanoparticles being facet-controlled. J. Mater. Chem. 2010, 20, 3791-3798.

11

Hakkinen, H. The gold-sulfur interface at the nanoscale. Nat. Chem. 2012, 4, 443-455.

12

Ohtomo, A.; Hwang, H. Y. A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface. Nature 2004, 427, 423-426.

13

Townsend, T. K.; Browning, N. D.; Osterloh, F. E. Nanoscale strontium titanate photocatalysts for overall water splitting. ACS Nano 2012, 6, 7420-7426.

14

Cen, C.; Thiel, S.; Mannhart, J.; Levy, J. Oxide nanoelectronics on demand. Science 2009, 323, 1026-1030.

15

Calderone, V. R.; Testino, A.; Buscaglia, M. T.; Bassoli, M.; Bottino, C.; Viviani, M.; Buscaglia, V.; Nanni, P. Size and shape control of SrTiO3 particles grown by epitaxial self-assembly. Chem. Mater. 2006, 18, 1627-1633.

16

Toshima, T.; Ishikawa, H.; Tanda, S.; Akiyama, T. Multipod crystals of perovskite SrTiO3. Cryst. Growth Des. 2008, 8, 2066-2069.

17

Yang, J.; Geng, B. Y.; Ye, Y. X.; Yu, X. Stick-like titania precursor route to M TiO3 (M = Sr, Ba, and Ca) polyhedra. CrystEngComm 2012, 14, 2959-2965.

18

Kalyani, V.; Vasile, B. S.; Ianculescu, A.; Buscaglia, M. T.; Buscaglia, V.; Nanni, P. Hydrothermal synthesis of SrTiO3 mesocrystals: Single crystal to mesocrystal transformation induced by topochemical reactions. Cryst. Growth Des. 2012, 12, 4450-4456.

19

Wang, L. Q.; Ferris, K. F.; Azad, S.; Engelhard, M. H.; Peden, C. H. F. Adsorption and reaction of acetaldehyde on stoichiometric and defective SrTiO3(100) surfaces. J. Phys. Chem. B 2004, 108, 1646-1652.

20

Wang, L. Q.; Ferris, K. F.; Azad, S.; Engelhard, M. H. Adsorption and reaction of methanol on stoichiometric and defective SrTiO3(100) surfaces. J. Phys. Chem. B 2005, 109, 4507-4513.

21

Becerra-Toledo, A. E.; Castell, M. R.; Marks, L. D. Water adsorption on SrTiO3(001): I. Experimental and simulated STM. Surf. Sci. 2012, 606, 762-765.

22

Bates, S. P.; Kresse, G.; Gillan, M. J. The adsorption and dissociation of ROH molecules on TiO2(110). Surf. Sci. 1998, 409, 336-349.

23

Kieu, L.; Boyd, P.; Idriss, H. Trends within the adsorption energy of alcohols over rutile TiO2(110) and (011) clusters. J. Mol. Catal. A—Chem. 2002, 188, 153-161.

24

Huang, W. C.; Lyu, L. M.; Yang, Y. C.; Huang, M. H. Synthesis of Cu2O nanocrystals from cubic to rhombic dodecahedral structures and their comparative photocatalytic activity. J. Am. Chem. Soc. 2012, 134, 1261-1267.

25

Moon, J.; Kerchner, J. A.; Krarup, H.; Adair, J. H. Hydrothermal synthesis of ferroelectric perovskites from chemically modified titanium isopropoxide and acetate salts. J. Mater. Res. 1999, 14, 425-435.

26

Zhang, S. C.; Han, Y. X.; Chen, B. C.; Song, X. P. The influence of TiO2·H2O gel on hydrothermal synthesis of SrTiO3 powders. Mater. Lett. 2001, 51, 368-370.

27

Zhang, S. C.; Liu, J. X.; Han, Y. X.; Chen, B. C.; Li, X. G. Formation mechanisms of SrTiO3 nanoparticles under hydrothermal conditions. Mater. Sci. Eng. B 2004, 110, 11-17.

28

Zana, R. Aqueous surfactant-alcohol systems: A review. Adv. Colloid Interface Sci. 1995, 57, 1-64.

29

Yin, Y.; Alivisatos, A. P. Colloidal nanocrystal synthesis and the organic-inorganic interface. Nature 2005, 437, 664-670.

File
12274_2014_495_MOESM1_ESM.pdf (1.5 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 10 February 2014
Revised: 04 May 2014
Accepted: 11 May 2014
Published: 05 August 2014
Issue date: September 2014

Copyright

© Tsinghua University Press and Springer‐Verlag Berlin Heidelberg 2014

Acknowledgements

Acknowledgements

This work was supported by the National Basic Research Program of China (973 Program) (No. 2012CB933600), the National Natural Science Foundation of China (Nos. 51072178, 51272228, 51371186, 81071258 and 21273200). W. H. thanks the Project of the Ningbo 3315 International Team for support.

Return