AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Shape-controlled growth of SrTiO3 polyhedral submicro/nanocrystals

Lingqing Dong1,2,§Hui Shi3,§Kui Cheng1Qi Wang3Wenjian Weng1,4( )Weiqiang Han1,2,5( )
Department of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and ApplicationsZhejiang UniversityHangzhou310027China
Ningbo Institute of Materials Technology & EngineeringChinese Academy of SciencesNingbo315210China
Soft Matter Research Center and Department of ChemistryZhejiang UniversityHangzhou310027China
Shanghai Institute of CeramicsChinese Academy of SciencesShanghai200050China
School of Physical Science and TechnologyShanghaiTech UniversityShanghai200031China

§ These authors contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

A series of SrTiO3 polyhedral submicro/nanocrystals with systematic morphology evolution from cubic to edge-truncated cubic and truncated rhombic dodecahedra have been synthesized by using a series of alcohol molecules with different acidities as surfactants. The concentration and pKa value of the alcohols both play important roles in determining the size and shape of the SrTiO3 polyhedral submicro/nanocrystals. The adsorption energy of alcohol molecules on SrTiO3 {110} facets depends on their pKa values, which are therefore critical for morphology control. Using the same strategy, a series of BaTiO3 polyhedral submicro/nanocrystals with systematic morphology evolution have also been successfully prepared.

Electronic Supplementary Material

Download File(s)
12274_2014_495_MOESM1_ESM.pdf (1.5 MB)

References

1

Peng, X. G.; Manna, L.; Yang, W. D.; Wickham, J.; Scher, E.; Kadavanich, A.; Alivisatos, A. P. Shape control of CdSe nanocrystals. Nature 2000, 404, 59-61.

2

Sun, Y. G.; Xia, Y. N. Shape-controlled synthesis of gold and silver nanoparticles. Science 2002, 298, 2176-2179.

3

Yang, H. G.; Sun, C. H.; Qiao, S. Z.; Zou, J.; Liu, G.; Smith, S. C.; Cheng, H. M.; Lu, G. Q. Anatase TiO2 single crystals with a large percentage of reactive facets. Nature 2008, 453, 638-642.

4

Tian, N.; Zhou, Z. Y.; Sun, S. G.; Ding, Y.; Wang, Z. L. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science 2007, 316, 732-735.

5

Habas, S. E.; Lee, H.; Radmilovic, V.; Somorjai, G. A.; Yang, P. Shaping binary metal nanocrystals through epitaxial seeded growth. Nat. Mater. 2007, 6, 692-697.

6

Huang, M. H.; Lin, P. H. Shape-controlled synthesis of polyhedral nanocrystals and their facet-dependent properties. Adv. Funct. Mater. 2012, 22, 14-24.

7

Rabuffetti, F. A.; Kim, H. S.; Enterkin, J. A.; Wang, Y. M.; Lanier, C. H.; Marks, L. D.; Poeppelmeier, K. R.; Stair, P. C. Synthesis-dependent first-order Raman scattering in SrTiO3 nanocubes at room temperature. Chem. Mater. 2008, 20, 5628-5635.

8

Viswanath, B.; Kundu, P.; HaIder, A.; Ravishankar, N. Mechanistic aspects of shape selection and symmetry breaking during nanostructure growth by wet chemical methods. J. Phys. Chem. C 2009, 113, 16866-16883.

9

Chiu, C. Y.; Li, Y. J.; Ruan, L. Y.; Ye, X. C.; Murray, C. B.; Huang, Y. Platinum nanocrystals selectively shaped using facet-specific peptide sequences. Nat. Chem. 2011, 3, 393-399.

10

Lee, K.; Kim, M.; Kim, H. Catalytic nanoparticles being facet-controlled. J. Mater. Chem. 2010, 20, 3791-3798.

11

Hakkinen, H. The gold-sulfur interface at the nanoscale. Nat. Chem. 2012, 4, 443-455.

12

Ohtomo, A.; Hwang, H. Y. A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface. Nature 2004, 427, 423-426.

13

Townsend, T. K.; Browning, N. D.; Osterloh, F. E. Nanoscale strontium titanate photocatalysts for overall water splitting. ACS Nano 2012, 6, 7420-7426.

14

Cen, C.; Thiel, S.; Mannhart, J.; Levy, J. Oxide nanoelectronics on demand. Science 2009, 323, 1026-1030.

15

Calderone, V. R.; Testino, A.; Buscaglia, M. T.; Bassoli, M.; Bottino, C.; Viviani, M.; Buscaglia, V.; Nanni, P. Size and shape control of SrTiO3 particles grown by epitaxial self-assembly. Chem. Mater. 2006, 18, 1627-1633.

16

Toshima, T.; Ishikawa, H.; Tanda, S.; Akiyama, T. Multipod crystals of perovskite SrTiO3. Cryst. Growth Des. 2008, 8, 2066-2069.

17

Yang, J.; Geng, B. Y.; Ye, Y. X.; Yu, X. Stick-like titania precursor route to M TiO3 (M = Sr, Ba, and Ca) polyhedra. CrystEngComm 2012, 14, 2959-2965.

18

Kalyani, V.; Vasile, B. S.; Ianculescu, A.; Buscaglia, M. T.; Buscaglia, V.; Nanni, P. Hydrothermal synthesis of SrTiO3 mesocrystals: Single crystal to mesocrystal transformation induced by topochemical reactions. Cryst. Growth Des. 2012, 12, 4450-4456.

19

Wang, L. Q.; Ferris, K. F.; Azad, S.; Engelhard, M. H.; Peden, C. H. F. Adsorption and reaction of acetaldehyde on stoichiometric and defective SrTiO3(100) surfaces. J. Phys. Chem. B 2004, 108, 1646-1652.

20

Wang, L. Q.; Ferris, K. F.; Azad, S.; Engelhard, M. H. Adsorption and reaction of methanol on stoichiometric and defective SrTiO3(100) surfaces. J. Phys. Chem. B 2005, 109, 4507-4513.

21

Becerra-Toledo, A. E.; Castell, M. R.; Marks, L. D. Water adsorption on SrTiO3(001): I. Experimental and simulated STM. Surf. Sci. 2012, 606, 762-765.

22

Bates, S. P.; Kresse, G.; Gillan, M. J. The adsorption and dissociation of ROH molecules on TiO2(110). Surf. Sci. 1998, 409, 336-349.

23

Kieu, L.; Boyd, P.; Idriss, H. Trends within the adsorption energy of alcohols over rutile TiO2(110) and (011) clusters. J. Mol. Catal. A—Chem. 2002, 188, 153-161.

24

Huang, W. C.; Lyu, L. M.; Yang, Y. C.; Huang, M. H. Synthesis of Cu2O nanocrystals from cubic to rhombic dodecahedral structures and their comparative photocatalytic activity. J. Am. Chem. Soc. 2012, 134, 1261-1267.

25

Moon, J.; Kerchner, J. A.; Krarup, H.; Adair, J. H. Hydrothermal synthesis of ferroelectric perovskites from chemically modified titanium isopropoxide and acetate salts. J. Mater. Res. 1999, 14, 425-435.

26

Zhang, S. C.; Han, Y. X.; Chen, B. C.; Song, X. P. The influence of TiO2·H2O gel on hydrothermal synthesis of SrTiO3 powders. Mater. Lett. 2001, 51, 368-370.

27

Zhang, S. C.; Liu, J. X.; Han, Y. X.; Chen, B. C.; Li, X. G. Formation mechanisms of SrTiO3 nanoparticles under hydrothermal conditions. Mater. Sci. Eng. B 2004, 110, 11-17.

28

Zana, R. Aqueous surfactant-alcohol systems: A review. Adv. Colloid Interface Sci. 1995, 57, 1-64.

29

Yin, Y.; Alivisatos, A. P. Colloidal nanocrystal synthesis and the organic-inorganic interface. Nature 2005, 437, 664-670.

Nano Research
Pages 1311-1318
Cite this article:
Dong L, Shi H, Cheng K, et al. Shape-controlled growth of SrTiO3 polyhedral submicro/nanocrystals. Nano Research, 2014, 7(9): 1311-1318. https://doi.org/10.1007/s12274-014-0495-y

855

Views

80

Crossref

N/A

Web of Science

76

Scopus

1

CSCD

Altmetrics

Received: 10 February 2014
Revised: 04 May 2014
Accepted: 11 May 2014
Published: 05 August 2014
© Tsinghua University Press and Springer‐Verlag Berlin Heidelberg 2014
Return