Journal Home > Volume 7 , Issue 8

Live observations of growing nanowires using in situ transmission electron microscopy (TEM) is becoming an increasingly important tool for understanding the dynamic processes occurring during nanowire growth. Here we present observations of growing InAs nanowires, which constitute the first reported in situ growth of a In-Ⅴ compound in a transmission electron microscope. Real time observations of events taking place over longer growth lengths were possible due to the high growth rates of up to 1 nm/s that were achieved. Straight growth (mainly in 〈111〉B directions) was observed at uniform temperature and partial pressure while intentional fluctuations in these conditions caused the nanowires to form kinks and change growth direction. The mechanisms behind the kinking are discussed in detail. In situ observations of nanowire kinking has previously only been reported for nonpolar diamond structure type materials (such as Si), but here we present results for a polar zinc blende structure (InAs). In this study a closed cell with electron and X-ray transparent a-SiN windows was used in a conventional high resolution transmission electron microscope, enabling high resolution imaging and compositional analysis in between the growth periods.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Straight and kinked InAs nanowire growth observed in situ by transmission electron microscopy

Show Author's information Filip Lenrick1( )Martin Ek1,Knut Deppert2Lars Samuelson2L. Reine Wallenberg1( )
nCHREM/Centre for Analysis and SynthesisLund UniversityLund22100Sweden
Division of Solid State PhysicsLund UniversityLund22100Sweden

Haldor Topsøe A/S, Nymøllevej 55, DK-2800 Kgs. Lyngby, Denmark

Abstract

Live observations of growing nanowires using in situ transmission electron microscopy (TEM) is becoming an increasingly important tool for understanding the dynamic processes occurring during nanowire growth. Here we present observations of growing InAs nanowires, which constitute the first reported in situ growth of a In-Ⅴ compound in a transmission electron microscope. Real time observations of events taking place over longer growth lengths were possible due to the high growth rates of up to 1 nm/s that were achieved. Straight growth (mainly in 〈111〉B directions) was observed at uniform temperature and partial pressure while intentional fluctuations in these conditions caused the nanowires to form kinks and change growth direction. The mechanisms behind the kinking are discussed in detail. In situ observations of nanowire kinking has previously only been reported for nonpolar diamond structure type materials (such as Si), but here we present results for a polar zinc blende structure (InAs). In this study a closed cell with electron and X-ray transparent a-SiN windows was used in a conventional high resolution transmission electron microscope, enabling high resolution imaging and compositional analysis in between the growth periods.

Keywords: nanowires, InAs, in situ, environmental TEM, group Ⅲ–Ⅴ, kinking

References(33)

1

Wallentin, J.; Anttu, N.; Asoli, D.; Huffman, M.; Åberg, I.; Magnusson, M. H.; Siefer, G.; Fuss-Kailuweit, P.; Dimroth, F.; Witzigmann, B. et al. InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit. Science 2013, 339, 1057–1060.

2

Svensson, C. P. T.; Mårtensson, T.; Trägårdh, J.; Larsson, C.; Rask, M.; Hessman, D.; Samuelson, L.; Ohlsson, J. Monolithic GaAs/InGaP nanowire light emitting diodes on silicon. Nanotechnology 2008, 19, 305201.

3

Nadj-Perge, S.; Frolov, S. M.; Bakkers, E. P. A. M.; Kouwenhoven, L. P. Spin-orbit qubit in a semiconductor nanowire. Nature 2010, 468, 1084–1087.

4

Mourik, V.; Zuo, K.; Frolov, S. M.; Plissard, S. R.; Bakkers, E. P. A. M.; Kouwenhoven, L. P. Signatures of Majorana fermions in hybrid superconductor-semiconductor nanowire devices. Science 2012, 336, 1003–1007.

5

Deng, M. T.; Yu, C. L.; Huang, G. Y.; Larsson, M.; Caroff, P.; Xu, H. Q. Anomalous zero-bias conductance peak in a Nb-InSb nanowire-Nb hybrid device. Nano Lett. 2012, 12, 6414–6419.

6

Oh, S. H.; Chisholm, M. F.; Kauffmann, Y.; Kaplan, W. D.; Luo, W. D.; Rühle, M.; Scheu, C. Oscillatory mass transport in vapor-liquid-solid growth of sapphire nanowires. Science 2010, 330, 489–493.

7

Gamalski, A. D.; Ducati, C.; Hofmann, S. Cyclic supersaturation and triple phase boundary dynamics in germanium nanowire growth. J. Phys. Chem. C 2011, 115, 4413–4417.

8

Wen, C. -Y.; Tersoff, J.; Hillerich, K.; Reuter, M. C.; Park, J. H.; Kodambaka, S.; Stach, E. A.; Ross, F. M. Periodically changing morphology of the growth interface in Si, Ge, and GaP nanowires. Phys. Rev. Lett. 2011, 107, 025503.

9

Wen, C. -Y.; Reuter, M. C.; Bruley, J.; Tersoff, J.; Kodambaka, S.; Stach, E. A.; Ross, F. M. Formation of compositionally abrupt axial heterojunctions in silicon-germanium nanowires. Science 2009, 326, 1247–1250.

10

Dick, K. A.; Kodambaka, S.; Reuter, M. C.; Deppert, K.; Samuelson, L.; Seifert, W.; Wallenberg, L. R.; Ross, F. M. The morphology of axial and branched nanowire heterostructures. Nano Lett. 2007, 7, 1817–1822.

11

Helveg, S.; López-Cartes, C.; Sehested, J.; Hansen, P. L.; Clausen, B. S.; Rostrup-Nielsen, J. R.; Abild-Pedersen, F.; Nørskov, J. K. Atomic-scale imaging of carbon nanofibre growth. Nature 2004, 427, 426–429.

12

Sharma, R.; Rez, P.; Treacy, M. M. J.; Stuart, S. J. In situ observation of the growth mechanisms of carbon nanotubes under diverse reaction conditions. J. Electron Microsc. 2005, 54, 231–237.

13

Yoshida, H.; Takeda, S.; Uchiyama, T.; Kohno, H.; Homma, Y. Atomic-scale in-situ observations of carbon nanotube growth from solid state iron carbide nanoparticles. Nano Lett. 2008, 8, 2082–2086.

14

Ross, F. M.; Tersoff, J.; Reuter, M. C. Sawtooth faceting in silicon nanowires. Phys. Rev. Lett. 2005, 95, 146104.

15

Wu, Y. Y.; Yang, P. D. Direct observation of vapor-liquid-solid nanowire growth. J. Am. Chem. Soc. 2001, 123, 3165–3166.

16

Chou, Y. -C.; Hillerich, K.; Tersoff, J.; Reuter, M. C.; Dick, K. A.; Ross, F. M. Atomic-scale variability and control of Ⅲ-Ⅴ nanowire growth kinetics. Science 2014, 343, 281–284.

17

Stach, E. A.; Pauzauskie, P. J.; Kuykendall, T.; Goldberger, J.; He, R. R.; Yang, P. D. Watching GaN nanowires grow. Nano Lett. 2003, 3, 867–869.

18

Park, H. D.; Prokes, S. M.; Cammarata, R. C. Growth of epitaxial InAs nanowires in a simple closed system. Appl. Phys. Lett. 2005, 87, 063110.

19

Heurlin, M.; Magnusson, M. H.; Lindgren, D.; Ek, M.; Wallenberg, L. R.; Deppert, K.; Samuelson, L. Continuous gas-phase synthesis of nanowires with tunable properties. Nature 2012, 492, 90–94.

20

Wagner, R. S.; Ellis, W. C. Vapor-liquid-solid mechanism of single crystal growth. Appl. Phys. Lett. 1964, 4, 89–90.

21

Barns, R. L.; Ellis, W. C. Whisker crystals of gallium arsenide and gallium phosphide grown by the vapor-liquid-solid mechanism. J. Appl. Phys. 1965, 36, 2296–2301.

22

Messing, M. E.; Hillerich, K.; Johansson, J.; Deppert, K.; Dick, K. A. The use of gold for fabrication of nanowire structures. Gold Bull. 2009, 42, 172–181.

23

Persson, A. I.; Larsson, M. W.; Stenström, S.; Ohlsson, B. J.; Samuelson, L.; Wallenberg, L. R. Solid-phase diffusion mechanism for GaAs nanowire growth. Nat. Mater. 2004, 3, 677–681.

24

Glas, F.; Harmand, J. -C.; Patriarche, G. Nucleation antibunching in catalyst-assisted nanowire growth. Phys. Rev. Lett. 2010, 104, 135501.

25

Madras, P.; Dailey, E.; Drucker, J. Kinetically induced kinking of vapor-liquid-solid grown epitaxial Si nanowires. Nano Lett. 2009, 9, 3826–3830.

26

Hillerich, K.; Dick, K. A.; Wen, C. -Y.; Reuter, M. C.; Kodambaka, S.; Ross, F. M. Strategies to control morphology in hybrid group Ⅲ–Ⅴ/group Ⅳ heterostructure nanowires. Nano Lett. 2013, 13, 903–908.

27

Wacaser, B. A.; Deppert, K.; Karlsson, L. S.; Samuelson, L.; Seifert, W. Growth and characterization of defect free GaAs nanowires. J. Cryst. Growth 2006, 287, 504–508.

28

Gamalski, A. D.; Tersoff, J.; Sharma, R.; Ducati, C.; Hofmann, S. Formation of metastable liquid catalyst during subeutectic growth of germanium nanowires. Nano Lett. 2010, 10, 2972–2976.

29

Kodambaka, S.; Tersoff, J.; Reuter, M. C.; Ross, F. M. Germanium nanowire growth below the eutectic temperature. Science 2007, 316, 729–732.

30

Dayeh, S. A.; Wang, J.; Li, N.; Huang, J. Y.; Gin, A. V; Picraux, S. T. Growth, defect formation, and morphology control of germanium-silicon semiconductor nanowire heterostructures. Nano Lett. 2011, 11, 4200–4206.

31

Schwarz, K.; Tersoff, J.; Kodambaka, S.; Chou, Y. -C.; Ross, F. M. Geometrical frustration in nanowire growth. Phys. Rev. Lett. 2011, 107, 265502.

32

Shin, N.; Filler, M. A. Controlling silicon nanowire growth direction via surface chemistry. Nano Lett. 2012, 12, 2865–2870.

33

Tian, B. Z.; Xie, P.; Kempa, T. J.; Bell, D. C.; Lieber, C. M. Single-crystalline kinked semiconductor nanowire superstructures. Nat. Nanotechnol. 2009, 4, 824–829.

File
12274_2014_481_MOESM1_ESM.pdf (2.9 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 17 February 2014
Revised: 11 April 2014
Accepted: 21 April 2014
Published: 21 July 2014
Issue date: August 2014

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014

Acknowledgements

Acknowledgements

We thank F. Eltes and P. Lundin for the aerosol deposition and M. Magnusson for giving insight into the aerotaxy process. Funding from the Knut and Alice Wallenberg Foundation and the Swedish Research Council is gratefully acknowledged.

Return