Journal Home > Volume 7 , Issue 8

We report the use of ultra-short, pulsed-laser annealed Ti/Au contacts to enhance the performance of multilayer MoS2 field effect transistors (FETs) on flexible plastic substrates without thermal damage. An analysis of the temperature distribution, based on finite difference methods, enabled understanding of the compatibility of our picosecond laser annealing for flexible poly(ethylene naphthalate) (PEN) substrates with low thermal budget (< 200 ℃). The reduced contact resistance after laser annealing provided a significant improvement in transistor performance including higher peak field-effect mobility (from 24.84 to 44.84 cm2·V-1·s-1), increased output resistance (0.42 MΩ at Vgs - Vth = 20 V, a three-fold increase), a six-fold increase in the self-gain, and decreased sub-threshold swing. Transmission electron microscopy analysis and current-voltage measurements suggested that the reduced contact resistance resulted from the decrease of Schottky barrier width at the MoS2-metal junction. These results demonstrate that selective contact laser annealing is an attractive technology for fabricating low-resistivity metal-semiconductor junctions, providing important implications for the application of high-performance two-dimensional semiconductor FETs in flexible electronics.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Selective and localized laser annealing effect for high-performance flexible multilayer MoS2 thin-film transistors

Show Author's information Hyukjun Kwon1,§Woong Choi2,§Daeho Lee1,3Yunsung Lee4Junyeon Kwon4Byungwook Yoo5Costas P. Grigoropoulos1( )Sunkook Kim4( )
Department of Mechanical Engineering University of California Berkeley CA 94720-1740 USA
School of Advanced Materials Engineering Kookmin University Seoul 136-702 South Korea
Department of Mechanical EngineeringGachon UniversitySeongnam-siGyeonggi461-701South Korea
Department of Electronics and Radio EngineeringKyung Hee UniversityGyeonggi446-701South Korea
Flexible Display Research CenterKorea Electronics Technology InstituteSeongnamGyeonggi463-816South Korea

§ These authors contributed equally to this publication.

Abstract

We report the use of ultra-short, pulsed-laser annealed Ti/Au contacts to enhance the performance of multilayer MoS2 field effect transistors (FETs) on flexible plastic substrates without thermal damage. An analysis of the temperature distribution, based on finite difference methods, enabled understanding of the compatibility of our picosecond laser annealing for flexible poly(ethylene naphthalate) (PEN) substrates with low thermal budget (< 200 ℃). The reduced contact resistance after laser annealing provided a significant improvement in transistor performance including higher peak field-effect mobility (from 24.84 to 44.84 cm2·V-1·s-1), increased output resistance (0.42 MΩ at Vgs - Vth = 20 V, a three-fold increase), a six-fold increase in the self-gain, and decreased sub-threshold swing. Transmission electron microscopy analysis and current-voltage measurements suggested that the reduced contact resistance resulted from the decrease of Schottky barrier width at the MoS2-metal junction. These results demonstrate that selective contact laser annealing is an attractive technology for fabricating low-resistivity metal-semiconductor junctions, providing important implications for the application of high-performance two-dimensional semiconductor FETs in flexible electronics.

Keywords: MoS2, flexible electronics, transition metal, dichalcogenides, thin-film transistors, laser annealing

References(31)

1

Kim, S.; Kwon, H. J.; Lee, S.; Shim, H.; Chun, Y.; Choi, W.; Kwack, J.; Han, D.; Song, M.; Kim, S., et al. Low-power flexible organic light-emitting diode display device. Adv. Mater. 2011, 23, 3511–3516.

2

Kuang, D.; Brillet, J.; Chen, P.; Takata, M.; Uchida, S.; Miura, H.; Sumioka, K.; Zakeeruddin, S. M.; Grätzel, M. Application of highly ordered TiO2 nanotube arrays in flexible dye-sensitized solar cells. ACS Nano 2008, 2, 1113–1116.

3

Kim, D. H.; Lu, N.; Ma, R.; Kim, Y. S.; Kim, R. H.; Wang, S.; Wu, J.; Won, S. M.; Tao, H.; Islam, A., et al. Epidermal electronics. Science 2011, 333, 838–843.

4

Viventi, J.; Kim, D. H.; Moss, J. D.; Kim, Y. S.; Blanco, J. A.; Annetta, N.; Hicks, A.; Xiao, J. L.; Huang, Y. G.; Callans, D. J., et al. A conformal, bio-interfaced class of silicon electronics for mapping cardiac electrophysiology. Sci. Transl. Med. 2010, 2, 24ra22.

5

Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nano-technology 2012, 7, 699–712.

6

Splendiani, A.; Sun, L.; Zhang, Y. B.; Li, T. S.; Kim, J.; Chim, C. Y.; Galli, G.; Wang, F. Emerging photoluminescence in monolayer MoS2. Nano Lett. 2010, 10, 1271–1275.

7

Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.

8

Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147–150.

9

Yoon, Y.; Ganapathi, K.; Salahuddin, S. How good can monolayer MoS2 transistors be? Nano Lett. 2011, 11, 3768–3773.

10

Popov, I.; Seifert, G.; Tománek, D. Designing electrical contacts to MoS2 monolayers: A computational study. Phys. Rev. Lett. 2012, 108, 156802.

11

Choi, W.; Cho, M. Y.; Konar, A.; Lee, J. H.; Cha, G. B.; Hong, S. C.; Kim, S.; Kim, J.; Jena, D.; Joo, J., et al. High-detectivity multilayer MoS2 phototransistors with spectral response from ultraviolet to infrared. Adv. Mater. 2012, 24, 5832–5836.

12

Fang, H.; Chuang, S.; Chang, T. C.; Takei, K.; Takahashi, T.; Javey, A. High-performance single layered WSe2 p-FETs with chemically doped contacts. Nano Lett. 2012, 12, 3788– 3792.

13

Das, S.; Chen, H. Y.; Penumatcha, A. V.; Appenzeller, J. High performance multilayer MoS2 transistors with scandium contacts. Nano Lett. 2013, 13, 100–105.

14

Bell, A. E. Review and analysis of laser annealing. RCA Rev. 1979, 40, 295–338.

15

Wood, R. F.; Giles, G. E. Macroscopic theory of pulsed-laser annealing. I. Thermal transport and melting. Phys. Rev. B 1981, 23, 2923–2942.

16

Baeri, P.; Campisano, S. U.; Foti, G.; Rimini, E. A melting model for pulsing-laser annealing of implanted semicon-ductors. J. Appl. Phys. 1979, 50, 788–797.

17

Léonard, F.; Talin, A. A. Electrical contacts to one- and two-dimensional nanomaterials. Nat. Nanotechnol. 2011, 6, 773–783.

18

Gadenne, M.; Podolskiy, V.; Gadenne, P.; Sheng, P.; Shalaev, V. M. Plasmon-enhanced absorption by optical phonons in metal-dielectric composites. Europhys. Lett. 2001, 53, 364–370.

19

Eaton, S. M.; Zhang, H. B.; Herman, P. R.; Yoshino, F.; Shah, L.; Bovatsek, J.; Arai, A. Y. Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate. Opt. Express 2005, 13, 4708–4716.

20

Ishigami, M.; Chen, J. H.; Cullen, W. G.; Fuhrer, M. S.; Williams, E. D. Atomic structure of graphene on SiO2. Nano Lett. 2007, 7, 1643–1648.

21

Kim, S.; Konar, A.; Hwang, W. S.; Lee, J. H.; Lee, J.; Yang, J.; Jung, C.; Kim, H.; Yoo, J. B.; Choi, J. Y., et al. High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals. Nat. Commun. 2012, 3, 1011.

22

Schroder, D. K. Semiconductor Material and Device Characterization, 3rd ed.; Wiley: New York, 2006.

DOI
23

Liu, H.; Neal, A. T.; Ye, P. D. Channel length scaling of MoS2 MOSFETs. ACS Nano 2012, 6, 8563–8569.

24

Hwang, W. S.; Remskar, M.; Yan, R.; Kosel, T.; Park, J. K.; Cho, B. J.; Haensch, W.; Xing, H.; Seabaugh, A.; Jena, D. Comparative study of chemically synthesized and exfoliated multilayer MoS2 field-effect transistors. Appl. Phys. Lett. 2013, 102, 043116.

25

Chang, H. Y.; Yang, S.; Lee, J.; Tao, L.; Hwang, W. S.; Jena, D.; Lu, N. S.; Akinwande, D. High-performance, highly bendable MoS2 transistors with high-kdielectrics for flexible low-power systems. ACS Nano 2013, 7, 5446–5452.

26

Sze, S. M. Physics of Semiconductor Devices, 2nd ed. ; Wiley: New York, 1981.

27

Teer, D. G. New solid lubricant coatings. Wear 2001, 251, 1068–1074.

28

Kitada, M.; Shimizu, N.; Shimotsu, T. Amorphous phase formation in Ti/Ni bilayer thin-films by solid-state diffusion. J. Mater. Sci. Lett. 1989, 8, 1393–1394.

29
Kang, J. H.; Sarkar, D.; Liu, W.; Jena, D.; Banerjee, K. A computational study of metal-contacts to beyond-graphene 2D semiconductor materials. IEDM Tech. Dig., in press, DOI: 10.1109/IEDM.2012.6479060.https://doi.org/10.1109/IEDM.2012.6479060
DOI
30

Pu, J.; Yomogida, Y.; Liu, K. K.; Li, L. J.; Iwasa, Y.; Takenobu, T. Highly flexible MoS2 thin-film transistors with ion gel dielectrics. Nano Lett. 2012, 12, 4013–4017.

31

Yoon, J.; Park, W.; Bae, G. Y.; Kim, Y.; Jang, H. S.; Hyun, Y.; Lim, S. K.; Kahng, Y. H.; Hong, W. K.; Lee, B. H.; Ko, H. C. Highly flexible and transparent multilayer MoS2 transistors with graphene electrodes. Small 2013, 19, 3295–3300.

File
12274_2014_476_MOESM1_ESM.pdf (802 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 25 November 2013
Revised: 09 April 2014
Accepted: 14 April 2014
Published: 28 June 2014
Issue date: August 2014

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014

Acknowledgements

Acknowledgements

This research was supported by the National Research Foundation of Korea (No. NRF-2013K1A3A1A32035549), a grant (No. KHU-20121643) from Kyung Hee University, and the Industrial Strategic Technology Development Program (No. 10045145). H. J. K., D. L., and C. P. G. gratefully acknowledge the US Air Force Office of Scientific Research AFOSR/AOARD under Grant No. FA2386-13-4123. W. C. acknowledges the financial support of the New Faculty Research Program 2012 of Kookmin University in Korea and the National Research Foundation of Korea (Nos. NRF2013R1A1A2008191 and NRF-2013K1A4A3055679).

Return