Journal Home > Volume 7 , Issue 8

High yields of CoFe2O4, NiFe2O4 and CdFe2O4 hierarchical porous ball-in-ball hollow spheres have been achieved using hydrothermal synthesis followed by calcination. The mechanism of formation is shown to involve an in situ carbonaceous-template process. Hierarchical porous CoFe2O4 hollow spheres with different numbers of shells can be obtained by altering the synthesis conditions. The electrochemical properties of the resulting CoFe2O4 electrodes have been compared, using different binders. The as-obtained CoFe2O4 and NiFe2O4 have relatively high reversible discharge capacity and good rate retention performance which make them promising materials for use as anode materials in lithium ion batteries.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Hierarchical porous metal ferrite ball-in-ball hollow spheres: General synthesis, formation mechanism, and high performance as anode materials for Li-ion batteries

Show Author's information Shouli LiAihua LiRanran ZhangYanyan HeYanjun ZhaiLiqiang Xu( )
Key Laboratory of Colloid and Interface Chemistry (Shandong University)Ministry of EducationSchool of Chemistry and Chemical EngineeringShandong UniversityJinan250100China

Abstract

High yields of CoFe2O4, NiFe2O4 and CdFe2O4 hierarchical porous ball-in-ball hollow spheres have been achieved using hydrothermal synthesis followed by calcination. The mechanism of formation is shown to involve an in situ carbonaceous-template process. Hierarchical porous CoFe2O4 hollow spheres with different numbers of shells can be obtained by altering the synthesis conditions. The electrochemical properties of the resulting CoFe2O4 electrodes have been compared, using different binders. The as-obtained CoFe2O4 and NiFe2O4 have relatively high reversible discharge capacity and good rate retention performance which make them promising materials for use as anode materials in lithium ion batteries.

Keywords: lithium ion battery, hierarchical, porous, ferrite, ball-in-ball

References(27)

1

Oh, M. H.; Yu, T.; Yu, S. -H.; Lim, B.; Ko, K. -T.; Willinger, M. -G.; Seo, D. -H.; Kim, B. -H.; Cho, M. G.; Parm, J. -H., et al. Galvanic replacement reactions in metal oxide nanocrystals. Science 2013, 340, 964–968.

2

Cho, N. -H.; Cheong, T. -C.; Min, J. H.; Wu, J. H.; Lee, S. J.; Kim, D.; Yang, J. -S.; Kim, S.; Kim Y. K.; Seong, S. -Y. A multifunctional core–shell nanoparticle for dendritic cell-based cancer immunotherapy. Nat. Nanotechnol. 2011, 6, 675–681.

3

Park, J.; Zheng, H. M.; Jun, Y. -W.; Alivisatos, A. P. Hetero-epitaxial anion exchange yields single-crystalline hollow nanoparticles. J. Am. Chem. Soc. 2009, 131, 13943–13945.

4

Zhang, Q.; Wang, W. S.; Goebl, J.; Yin, Y. D. Self-templated synthesis of hollow nanostructures. Nano Today 2009, 4, 494–507.

5

Pan, A. Q.; Wu, H. B.; Zhang, L.; Lou, X. W. Uniform V2O5 nanosheet-assembled hollow microflowers with excellent lithium storage properties. Energy Environ. Sci. 2013, 6, 1476–1479.

6

Wang, Z. Y.; Zhou, L.; Lou, X. W. Metal oxide hollow nanostructures for lithium-ion batteries. Adv. Mater. 2012, 24, 1903–1911.

7

Wang, J. Y.; Yang, N. L.; Tang, H. J.; Dong, Z. H.; Jin, Q.; Yang, M.; Kisailus, D.; Zhao, H. J.; Tang Z. Y.; Wang, D. Accurate control of multishelled Co3O4 hollow microspheres as high-performance anode materials in lithium-ion batteries. Angew. Chem. Int. Ed. 2013, 52, 6417–6420.

8

Lai, X. Y.; Halpert J. E.; Wang, D. Recent advances in micro-/nano-structured hollow spheres for energy applications: From simple to complex systems. Energy Environ. Sci. 2012, 5, 5604–5618.

9

Dong, Z. H.; Lai, X. Y.; Halpert, J. E.; Yang, N. L.; Yi, L. X.; Zhai, J.; Wang, D.; Tang, Z. Y.; Jiang, L. Accurate control of multishelled ZnO hollow microspheres for dye-sensitized solar cells with high efficiency. Adv. Mater. 2012, 24, 1046–1049.

10

Lou, X. W.; Archer, L. A.; Yang, Z. C. Hollow micro-/nanostructures: Synthesis and applications. Adv. Mater. 2008, 20, 3987–4019.

11

Son, M. Y.; Hong, Y. J.; Lee J. -K.; Kang, Y. C. One-pot synthesis of Fe2O3 yolk–shell particles with two, three, and four shells for application as an anode material in lithium-ion batteries. Nanoscale 2013, 5, 11592–11597.

12

Li, Z. M.; Lai, X. Y.; Wang, H.; Mao, D. Xing, C. J.; Wang, D. General synthesis of homogeneous hollow core–shell ferrite microspheres. J. Phys. Chem. C 2009, 113, 2792–2797.

13

Zhang, G. Q.; Yu, L.; Wu, H. B.; Hoster, H. E.; Lou, X. W. Formation of ZnMn2O4 ball-in-ball hollow microspheres as a high-performance anode for lithium-ion batteries. Adv. Mater. 2012, 24, 4609–4613.

14

Lou, X. W.; Wang, Y.; Yuan, C. L.; Lee, J. Y.; Archer, L. A. Template-free synthesis of SnO2 hollow nanostructures with high lithium storage capacity. Adv. Mater. 2006, 18, 2325–2329.

15

Li, Y.; Fu, Z. -Y.; Su, B. -L. Hierarchically structured porous materials for energy conversion and storage. Adv. Funct. Mater. 2012, 22, 4634–4667.

16

Hu, J.; Chen, M.; Fang X. S.; Wu, L. M. Fabrication and application of inorganic hollow spheres. Chem. Soc. Rev. 2011, 40, 5472–5491.

17

Song, Q.; Zhang, Z. J. Controlled synthesis and magnetic properties of bimagnetic spinel ferrite CoFe2O4 and MnFe2O4 nanocrystals with core–shell architecture. J. Am. Chem. Soc. 2012, 134, 10182–10190.

18

Li, J. F.; Wang, J. Z.; Liang, X; Zhang, Z. J.; Liu, H. K.; Qian, Y. T.; Xiong, S. L. Hollow MnCo2O4 submicrospheres with multilevel interiors: From mesoporous spheres to yolk-in-double-shell structures. ACS Appl. Mater. Interfaces 2014, 6, 24–30.

19

Chu, Y. -Q.; Fu Z. -W.; Qin, Q. -Z. Cobalt ferrite thin films as anode material for lithium ion batteries. Electrochim. Acta 2004, 49, 4915–4921.

20

Lavela, P.; Tirado, J. L. CoFe2O4 and NiFe2O4 synthesized by sol–gel procedures for their use as anode materials for Li ion batteries. J. Power Sources 2007, 172, 379–387.

21

Wang, Y.; Su, D. W.; Ung, A.; Ahn J. -H.; Wang, G. X. Hollow CoFe2O4 nanospheres as a high capacity anode material for lithium ion batteries. Nanotechnology 2012, 23, 055402.

22

Li, Z. H.; Zhao, T. P.; Zhan, X. Y.; Gao, D. S.; Xiao, Q. Z.; Lei, G. T. High capacity three-dimensional ordered macroporous CoFe2O4 as anode material for lithium ion batteries. Electrochim. Acta 2010, 55, 4594–4598.

23

Xia, H.; Zhu, D. D.; Fu, Y. S.; Wang, X. CoFe2O4–graphene nanocomposite as a high-capacity anode material for lithium-ion batteries, Electrochim. Acta 2012, 83, 166–174.

24

Liu, S. Y.; Xie, J.; Fang, C. C.; Cao, G. S.; Zhu T. J.; Zhao, X. B. Self-assembly of a CoFe2O4/graphene sandwich by a controllable and general route: Towards a high-performance anode for Li-ion batteries. J. Mater. Chem. 2012, 22, 19738–19743.

25

Momma, K.; Izumi, F. VESTA: A three-dimensional visualization system for electronic and structural analysis. J. Appl. Cryst. 2008, 41, 653–658.

26

Wei, W.; Wang, Z. H.; Liu, Z.; Liu, Y.; He, L.; Chen, D. Z.; Umar, A.; Guo, L.; Li, J. H. Metal oxide hollow nanostructures: Fabrication and Li storage performance. J. Power Sources 2013, 238, 376–387.

27

Wang, N. N.; Xu, H. Y.; Chen, L.; Gu, X.; Yang J.; Qian, Y. T. A general approach for MFe2O4 (M = Zn, Co, Ni) nanorods and their high performance as anode materials for lithium ion batteries. J. Power Sources 2014, 247, 163–169.

File
12274_2014_474_MOESM1_ESM.pdf (5.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 25 January 2014
Revised: 08 April 2014
Accepted: 12 April 2014
Published: 24 June 2014
Issue date: August 2014

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014

Acknowledgements

Acknowledgements

Financial support from National Nature Science Foundation of China and the Academy of Sciences Large Apparatus United Fund (No. 11179043), and the 973 Project of China (No. 2011CB935901) are greatly appreciated.

Return