Journal Home > Volume 7 , Issue 8

A facile biomolecule-assisted hydrothermal route followed by calcination has been employed for the preparation of monoclinic yttrium oxysulfate hollow spheres doped with other rare-earth ions (Yb3+ and Eu3+ or Er3+). The formation of hollow spheres may involve Ostwald ripening. The resulting hybrid materials were used for upconversion applications. The host crystal structure allows the easy co-doping of two different rare-earth metal ions without significantly changing the host lattice. The luminescent properties were affected by the ratio and concentration of dopant rare-earth metal ions due to energy transfer and the symmetry of the crystal field. The type of luminescent center and the crystallinity of samples were also shown to have a significant influence on the optical properties of the as-prepared products.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Hollow spherical rare-earth-doped yttrium oxysulfate: A novel structure for upconversion

Show Author's information Gen Chen1,2Fashen Chen1Xiaohe Liu1( )Wei Ma1Hongmei Luo2Junhui Li3( )Renzhi Ma4Guanzhou Qiu1
Department of Inorganic Materials School of Resources Processing and Bioengineering Central South University Changsha Hunan 410083 China
Department of Chemical Engineering New Mexico State University Las Cruces New Mexico 88003 USA
State Key Laboratory of High Performance Complex Manufacturing School of Mechanical and Electronical Engineering Central South University Changsha Hunan 410083 China
International Center for Materials Nanoarchitectonics (MANA) National Institute for Materials Science (NIMS) Namiki 1-1 Tsukuba Ibaraki 305-0044 Japan

Abstract

A facile biomolecule-assisted hydrothermal route followed by calcination has been employed for the preparation of monoclinic yttrium oxysulfate hollow spheres doped with other rare-earth ions (Yb3+ and Eu3+ or Er3+). The formation of hollow spheres may involve Ostwald ripening. The resulting hybrid materials were used for upconversion applications. The host crystal structure allows the easy co-doping of two different rare-earth metal ions without significantly changing the host lattice. The luminescent properties were affected by the ratio and concentration of dopant rare-earth metal ions due to energy transfer and the symmetry of the crystal field. The type of luminescent center and the crystallinity of samples were also shown to have a significant influence on the optical properties of the as-prepared products.

Keywords: Upconversion, Hydrothermal, Hollow sphere, Ostwald ripening, Y2O2SO4

References(43)

1

Wang, F.; Liu, X. G. Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals. Chem. Soc. Rev. 2009, 38, 976–989.

2

Haase, M.; Schäfer, H. Upconverting nanoparticles. Angew. Chem. Int. Ed. 2011, 50, 5808–5829.

3

Auzel, F. Upconversion and anti-Stokes processes with f and d ions in solids. Chem. Rev. 2004, 104, 139–174.

4

Mai, H. -X.; Zhang, Y. -W.; Si, R.; Yan, Z. -G.; Sun, L. -D.; You, L. -P.; Yan, C. -H. High-quality sodium rare-earth fluoride nanocrystals: Controlled synthesis and optical properties. J. Am. Chem. Soc. 2006, 128, 6426–6436.

5

Wang, F.; Han, Y.; Lim, C. S.; Lu, Y. H.; Wang, J.; Xu, J.; Chen, H. Y.; Zhang, C.; Hong, M. H.; Liu, X. G. Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping. Nature 2010, 463, 1061–1065.

6

Jiang, S.; Zhang, Y.; Lim, K. M.; Sim, E. K. W.; Ye, L. NIR-to-visible upconversion nanoparticles for fluorescent labeling and targeted delivery of siRNA. Nanotechnology 2009, 20, 155101.

7

Wang, M.; Mi, C. -C.; Wang, W. -X.; Liu, C. -H.; Wu, Y. -F.; Xu, Z. -R.; Mao, C. -B.; Xu, S. -K. Immunolabeling and NIR-excited fluorescent imaging of HeLa cells by using NaYF4: Yb, Er upconversion nanoparticles. ACS Nano 2009, 3, 1580–1586.

8

Wang, L. Y.; Yan, R. X.; Huo, Z. Y.; Wang, L.; Zeng, J. H.; Bao, J.; Wang, X.; Peng, Q.; Li, Y. D. Fluorescence resonant energy transfer biosensor based on upconversion-luminescent nanoparticles. Angew. Chem. Int. Ed. 2005, 44, 6054–6057.

9

Hilderbrand, S. A.; Shao, F. W.; Salthouse, C.; Mahmood, U.; Weissleder, R. Upconverting luminescent nanomaterials: Application to in vivo bioimaging. Chem. Commun. 2009, 28, 4188–4190.

10

Wang, F.; Deng, R. R.; Wang, J.; Wang, Q. X.; Han, Y.; Zhu, H. M.; Chen, X. Y.; Liu, X. G. Tuning upconversion through energy migration in core–shell nanoparticles. Nat. Mater. 2011, 10, 968–973.

11

Yu, X. F.; Li, M.; Xie, M. Y.; Chen, L. D.; Li, Y.; Wang Q.Q. Dopant-controlled synthesis of water-soluble hexagonal NaYF4 nanorods with efficient upconversion fluorescence for multicolor bioimaging. Nano Res. 2010, 3, 51–60.

12

Xu, W.; Zhu, Y. S.; Chen, X.; Wang, J.; Tao, L.; Xu, S.; Liu, T.; Song, H. W. A novel strategy for improving upconversion luminescence of NaYF4: Yb, Er nanocrystals by coupling with hybrids of silver plasmon nanostructures and poly(methyl methacrylate) photonic crystals. Nano Res. 2013, 6, 795–807.

13

Mahalingam, V.; Vetrone, F.; Naccache, R.; Speghini, A.; Capobianco, J. A. Colloidal Tm3+/Yb3+-doped LiYF4 nanocrystals: Multiple luminescence spanning the UV to NIR regions via low-energy excitation. Adv. Mater. 2009, 21, 4025–4028.

14

Qu, Y. Q.; Kong, X. G.; Sun, Y. J.; Zeng, Q. H.; Zhang, H. Effect of excitation power density on the upconversion luminescence of LaF3: Yb3+, Er3+ nanocrystals. J. Alloys Compd. 2009, 485, 493–496.

15

Liu, Y. S.; Tu, D. T.; Zhu, H. M.; Li, R. F.; Luo, W. Q.; Chen, X. Y. A strategy to achieve efficient dual-mode luminescence of Eu3+ in lanthanides doped multifunctional NaGdF4 nanocrystals. Adv. Mater. 2010, 22, 3266–3271.

16

Machida, M.; Kawano, T.; Eto, M.; Zhang, D. J.; Ikeue, K. Ln dependence of the large-capacity oxygen storage/release property of Ln oxysulfate/oxysulfide systems. Chem. Mater. 2007, 19, 954–960.

17

Zhang, D. J.; Yoshioka, F.; Ikeue, K.; Machida, M. Synthesis and oxygen release/storage properties of Ce-substituted La-oxysulfates, (La1–xCex)2O2SO4. Chem. Mater. 2008, 20, 6697–6703.

18

Machida, M.; Kawamura, K.; Kawano, T.; Zhang, D. J.; Ikeue, K. Layered Pr-dodecyl sulfate mesophases as precursors of Pr2O2SO4 having a large oxygen-storage capacity. J. Mater. Chem. 2006, 16, 3084–3090.

19

Kim, S. W.; Masui, T.; Imanaka, N. Synthesis of red-emitting phosphors based on gadolinium oxysulfate by a flux method. Electrochem. 2009, 77, 611–613.

20

Kijima, T.; Shinbori, T.; Sekita, M.; Uota, M.; Sakai, G. Abnormally enhanced Eu3+ emission in Y2O2SO4: Eu3+ inherited from their precursory dodecylsulfate-templated concentric-layered nanostructure. J. Lumin. 2008, 128, 311–316.

21

Kijima, T.; Isayama, T.; Sekita, M.; Uota, M.; Sakai, G. Emission properties of Tb3+ in Y2O2SO4 derived from their precursory dodecylsulfate-templated concentric- and straightlayered nanostructures. J. Alloys Compd. 2009, 485, 730–733.

22

Hülsing, H.; Kahle, H. G.; Kasten, A. A microscopic model describing the spin-flip processes at the first-order antiferromagnetic-to-ferrimagnetic phase transition in Dy2O2SO4. J. Magn. Magn. Mater. 1983, 31, 1073–1074.

23

Liang, J. B.; Ma, R. Z.; Geng, F. X.; Ebina, Y.; Sasaki, T. Ln2(OH)4SO4·nH2O (Ln = Pr to Tb; n ~ 2): A new family of layered rare-earth hydroxides rigidly pillared by sulfate ions. Chem. Mater. 2010, 22, 6001–6007.

24

Lou, X. W.; Archer, L. A.; Yang, Z. C. Hollow micro-/nanostructures: Synthesis and applications. Adv. Mater. 2008, 20, 3987–4019.

25

Machida, M.; Kawamura, K.; Ito, K.; Ikeue, K. Large-capacity oxygen storage by lanthanide oxysulfate/oxysulfide systems. Chem. Mater. 2005, 17, 1487–1492.

26

Liu, X. H.; Zhang, D.; Jiang, J. H.; Zhang, N.; Ma, R. Z.; Zeng, H. B.; Jia, B. P.; Zhang, S. B.; Qiu, G. Z. General synthetic strategy for high-yield and uniform rare-earth oxysulfate (RE2O2SO4, RE = La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Y, Ho, and Yb) hollow spheres. RSC Adv. 2012, 2, 9362–9365.

27

Chen, G.; Ma, W.; Liu, X. H.; Liang, S. Q.; Qiu, G. Z.; Ma, R. Z. Controlled fabrication and optical properties of uniform CeO2 hollow spheres. RSC Adv. 2013, 3, 3544–3547.

28

Ma, W.; Guo, Y. F.; Liu, X. H.; Zhang, D.; Liu, T.; Ma, R. Z.; Zhou, K. C.; Qiu, G. Z. Nickel dichalcogenide hollow spheres: Controllable fabrication, structural modification, and magnetic properties. Chem. Eur. J. 2013, 19, 15467–15471.

29

Lian, J. B.; Sun, X. D.; Li, X. D. Synthesis, characterization and photoluminescence properties of (Gd1–x, Eux)2O2SO4 sub-microphosphors by homogeneous precipitation method. Mater. Chem. Phys. 2011, 125, 479–484.

30

Luwang, M. N.; Ningthoujam, R. S.; Jagannath; Srivastava S. K.; Vatsa, R. K. Effects of Ce3+ codoping and annealing on phase transformation and luminescence of Eu3+-doped YPO4 nanorods: D2O solvent effect. J. Am. Chem. Soc. 2010, 132, 2759–2768.

31

Yan, R. X.; Sun, X. M.; Wang, X.; Peng, Q.; Li, Y. D. Crystal structures, anisotropic growth, and optical properties: Controlled synthesis of lanthanide orthophosphate onedimensional nanomaterials. Chem. Eur. J. 2005, 11, 2183–2195.

32

Lian, J. B.; Sun, X. D.; Liu, Z. G.; Yu, J. Y.; Li, X. D. Synthesis and optical properties of (Gd1–x, Eux)2O2SO4 nano-phosphors by a novel co-precipitation method. Mater. Res. Bull. 2009, 44, 1822–1827.

33

Joubert, M. F. Photon avalanche upconversion in rare earth laser materials. Opt. Mater. 1999, 11, 181–203.

34

Kurian, P. A.; Vijayan, C.; Sandeep, C. S. S.; Philip, R.; Sathiyamoorthy, K. Two-photon-assisted excited state absorption in nanocomposite films of PbS stabilized in a synthetic glue matrix. Nanotechnology 2007, 18, 075708.

35

Fan, B.; Chlique, C.; Merdrignac-Conanec, O.; Zhang, X. H.; Fan, X. P. Near-infrared quantum cutting material Er3+/Yb3+ doped La2O2S with an external quantum yield higher than 100%. J. Phys. Chem. C 2012, 116, 11652–11657.

36

Li, G. G.; Shang, M. M.; Geng, D. L.; Yang, D. M.; Peng, C.; Cheng, Z. Y.; Lin, J. Multiform La2O3: Yb3+/Er3+/Tm3+ submicro-/microcrystals derived by hydrothermal process: Morphology control and tunable upconversion luminescence properties. CrystEngComm 2012, 14, 2100–2111.

37

Li, Z. H.; Park, W.; Zorzetto, G.; Lemaire, J. -S.; Summers, C. J. Synthesis protocols for δ-doped NaYF4: Yb, Er. Chem. Mater. 2014, 26, 1770–1778.

38

Shi, L. S.; Shen, Q. Y.; Qiu, Z. Z. Concentration-dependent upconversion emission in Er-doped and Er/Yb-codoped LiTaO3 polycrystals. J. Lumin. 2014, 148, 94–97.

39

Guo, R. M.; Wang, B.; Wang, X. J.; Wang, L.; Jiang, L. J.; Zhou, Z. P. Suppression of second-order cooperative upconversion in Er/Yb silicate glass. Opt. Mater. 2013, 35, 935–939.

40

Martín, I. R.; Rodríguez, V. D.; Lavín, V.; Rodríguez-Mendoza, U. R. Transfer and back transfer processes in Yb3+–Er3+ codoped fluoroindate glasses. J. Appl. Phys. 1999, 86, 935–939.

41

Vega-Durán, J. T.; Barbosa-García, O.; Diáz-Torres, L. A.; Meneses-Nava, M. A.; Sumida, D. S. Effects of energy back transfer on the luminescence of Yb and Er ions in YAG. Appl. Phys. Lett. 2000, 76, 2032–2034.

42

Volanti, D. P.; Rosa, I. L. V.; Paris, E. C.; Paskocimas, C. A.; Pizani, P. S.; Varela, J. A.; Longo, E. The role of the Eu3+ ions in structure and photoluminescence properties of SrBi2Nb2O9 powders. Opt. Mater. 2009, 31, 995–999.

43

Fang, P. Y.; Fan, H. Q.; Li, J.; Liang, F. J. Lanthanum induced larger polarization and dielectric relaxation in Aurivillius phase SrBi2–xLaxNb2O9 ferroelectric ceramics. J. Appl. Phys. 2010, 107, 064104.

File
12274_2014_472_MOESM1_ESM.pdf (1.3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 20 December 2013
Revised: 08 April 2014
Accepted: 10 April 2014
Published: 09 June 2014
Issue date: August 2014

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014

Acknowledgements

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 51372279), Hunan Provincial Natural Science Foundation of China (No. 13JJ1005) and the Shenghua Scholar Program of Central South University. We also acknowledge the office of the Vice-President for Research at New Mexico State University (NMSU). The authors thank Dr. Zhiyong Mao for the PL measurements.

Return