Journal Home > Volume 7 , Issue 7

Flexible lithium ion batteries (LIBs) have recently attracted increasing attention as they show unique promising advantages, such as flexibility, shape diversity, and light weight. Similar to conventional LIBs, flexible LIBs with long cycle life and high-rate performance are very important for applications of high performance flexible electronics. Herein, we report a three-dimensional (3D) web-like binder-free Li4Ti5O12 (LTO) anode assembled from numerous 1D nanowires exhibiting excellent cycling performance with high capacities of 153 and 115 mA·h·g−1 after 5, 000 cycles at 2 C and 20 C, respectively, and excellent rate property with a capacity of 103 mA·h·g−1 even at a very high current rate of 80 C. Surprisingly, a flexible full battery assembled from the web-like LTO nanostructure and LiMn2O4 (LMO) nanorods exhibited a high capacity of 125 mA·h·g−1 at high current rate of 20 C, and showed excellent flexibility with little performance degradation even in seriously bent states.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Ultralong-life and high-rate web-like Li4Ti5O12 anode for high-performance flexible lithium-ion batteries

Show Author's information Xianfu Wang1,2Bin Liu2Xiaojuan Hou2Qiufan Wang2Wenwu Li2Di Chen2Guozhen Shen1( )
State Key Laboratory for Superlattices and MicrostructuresInstitution of SemiconductorsChinese Academy of ScienceBeijing100083China
Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic InformationHuazhong University of Science and Technology (HUST)Wuhan430074China

Abstract

Flexible lithium ion batteries (LIBs) have recently attracted increasing attention as they show unique promising advantages, such as flexibility, shape diversity, and light weight. Similar to conventional LIBs, flexible LIBs with long cycle life and high-rate performance are very important for applications of high performance flexible electronics. Herein, we report a three-dimensional (3D) web-like binder-free Li4Ti5O12 (LTO) anode assembled from numerous 1D nanowires exhibiting excellent cycling performance with high capacities of 153 and 115 mA·h·g−1 after 5, 000 cycles at 2 C and 20 C, respectively, and excellent rate property with a capacity of 103 mA·h·g−1 even at a very high current rate of 80 C. Surprisingly, a flexible full battery assembled from the web-like LTO nanostructure and LiMn2O4 (LMO) nanorods exhibited a high capacity of 125 mA·h·g−1 at high current rate of 20 C, and showed excellent flexibility with little performance degradation even in seriously bent states.

Keywords: ultralong-life, high-rate, web-like Li4Ti5O12 anode, flexible batteries

References(38)

1

Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652–657.

2

Wang, X. F.; Liu, B.; Wang, Q. F.; Song, W. F.; Hou, X. J.; Chen, D.; Cheng. Y. –B.; Shen, G. Z. Three-dimensional hierarchical GeSe2 nanostructures for high performance flexible all-solid-state supercapacitors. Adv. Mater. 2013, 25, 1479–1486.

3

Pushparaj, V. L.; Shaijumon, M. M.; Kumar, A.; Murugesan, S.; Ci, L.; Vajtai, R.; Ajayan, P. M. Flexible energy storage devices based on nanocomposite paper. Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 13574–13577.

4

Nishide, H.; Oyaizu, K. Toward flexible batteries. Science 2008, 319, 737–738.

5

Wang, X. F.; Liu, B.; Liu, R.; Wang, Q. F.; Hou, X. J.; Chen, D.; Wang, R. M.; Shen, G. Z. Fiber-based flexible all-solid-state asymmetric supercapacitors for integrated photodetecting system. Angew. Chem. Int. Ed. 2014, 53, 1849–1853.

6

Wang, X. F.; Song, W. F.; Liu, B.; Chen, G.; Chen, D.; Zhou, C. W.; Shen, G. Z. High-performance organic–inorganic hybrid photodetectors based on P3HT: CdSe nanowire heterojunctions on rigid and flexible substrates. Adv. Funct. Mater. 2013, 23, 1202–1209.

7

Hu, L. B.; Wu, H.; La Mantia, F.; Yang, Y.; Cui, Y. Thin, flexible secondary Li-ion paper batteries. ACS Nano 2010, 4, 5843–5848.

8

Hu, L. B.; Choi, J. W.; Yang, Y.; Jeong, S.; La Mantia, F.; Cui, L. F.; Cui, Y. Highly conductive paper for energy-storage devices. Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 21490–21494.

9

Liu, B.; Wang, X. F.; Liu, B. Y.; Wang, Q. F.; Tan, D. S.; Song, W. F.; Hou, X. J.; Chen, D.; Shen, G. Z. Advanced rechargeable lithium-ion batteries based on bendable ZnCo2O4-urchins-on-carbon-fibers electrodes. Nano Res. 2013, 6, 525–534.

10

Li, N.; Chen, Z. P.; Ren, W. C.; Li, F.; Cheng, H. -M. Flexible graphene-based lithium ion batteries with ultrafast charge and discharge rates. Proc. Natl. Acad. Sci. U.S.A. 2012, 109, 17360–17365.

11

Kwon, Y. H.; Woo, S. W.; Jung, H. R.; Yu, H. K.; Kim, K.; Oh, B. H.; Kim, J. Y. Cable-type flexible lithium ion battery based on hollow multi-helix electrodes. Adv. Mater. 2012, 24, 5192–5197.

12

Lin, H. J.; Weng, W.; Ren, J.; Qiu, L. B.; Zhang, Z. T.; Chen, P. N.; Chen, X. L.; Deng, J.; Wang, Y. G.; Peng, H. S. Twisted aligned carbon nanotube/silicon composite fiber anode for flexible wire-shaped lithium-ion battery. Adv. Mater. 2014, 26, 1217–1222.

13

Koo, M.; Park, K. I.; Lee, S. H.; Suh, M.; Jeon, D. Y.; Choi, J. W.; Lee, K. J. Bendable inorganic thin-film battery for fully flexible electronic systems. Nano Lett. 2012, 12, 4810–4816.

14

Xu, S.; Zhang, Y. H.; Cho, J.; Lee, J.; Huang, X.; Jia, L.; Fan, J. A.; Su, Y.; Su, J.; Zhang, H. G., et al. Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems. Nat. Commun. 2013, 4, 1543.

15

Choi, K. -H.; Cho, S. -J.; Kim, S. -H.; Kwon, Y. H.; Kim, J. Y; Lee, S. -Y. Thin, deformable, and safety-reinforced plastic crystal polymer electrolytes for high-performance flexible lithium-ion batteries. Adv. Funct. Mater. 2014, 24, 44–52.

16

Yu, L.; Wu, H. B.; Lou, X. W. Mesoporous Li4Ti5O12 hollow spheres with enhanced lithium storage capability. Adv. Mater. 2013, 25, 2296–2300.

17

Liu, S. H.; Wang, Z. Y.; Yu, C.; Wu, H. B.; Wang, G.; Dong, Q.; Qiu, J. S.; Eychmüller, A.; Lou, X. W. A flexible TiO2 (B)-based battery electrode with superior power rate and ultralong cycle life. Adv. Mater. 2013, 25, 3462–3467.

18

Luo, J. S.; Liu, J. L.; Zeng, Z. Y.; Ng, C. F.; Ma, L. J.; Zhang, H.; Lin, J. Y.; Shen, Z. X.; Fan, H. J. Three-dimensional graphene foam supported Fe3O4 lithium battery anodes with long cycle life and high rate capability. Nano Lett. 2013, 13, 6136–6143.

19

Wang, X. F.; Xiang, Q. Y.; Liu, B.; Wang, L. J.; Luo, T.; Chen, D.; Shen, G. Z. TiO2 modified FeS nanostructures with enhanced electrochemical performance for lithium-ion batteries. Sci. Rep. 2013, 3, 2007.

20

Zhu, G. N.; Liu, H. J.; Zhuang, J. H.; Wang, C. X.; Wang, Y. G.; Xia, Y. Y. Carbon-coated nano-sized Li4Ti5O12 nanoporous micro-sphere as anode material for high-rate lithium-ion batteries. Energy Environ. Sci. 2011, 4, 4016–4022.

21

Zhang, G. Q.; Wu, H. B.; Hoster, H. E.; Chan-Park, M. B.; Lou, X. W. Single-crystalline NiCo2O4 nanoneedle arrays grown on conductive substrates as binder-free electrodes for high-performance supercapacitors. Energy Environ. Sci. 2012, 5, 9453–9456.

22

Zhou, X. S.; Cao, A. M.; Wan, L. J.; Guo, Y. G. Spin-coated silicon nanoparticle/graphene electrode as a binder-free anode for high-performance lithium-ion batteries. Nano Res. 2012, 5, 845–853.

23

Luo, J. S.; Xia, X. H.; Luo, Y. S.; Guan, C.; Liu, J. L.; Qi, X. Y.; Ng, C. F.; Yu, T.; Zhang, H.; Fan, H. J. Rationally designed hierarchical TiO2@Fe2O3 hollow nanostructures for improved lithium ion storage. Adv. Energy Mater. 2013, 3, 737–743.

24

Wang, X. F.; Liu, B.; Xiang, Q. Y.; Wang, Q. F.; Hou, X. J.; Chen, D.; Shen, G. Z. Spray-painted binder-free SnSe electrodes for high-performance energy-storage devices. ChemSusChem, 2014, 7, 308–313.

25

Wang, Y. Q.; Gu, L.; Guo, Y. G.; Li, H.; He, X. Q.; Tsukimoto, S.; Ikuhara, Y. C.; Wan, L. J. Rutile-TiO2 nanocoating for a high-rate Li4Ti5O12 anode of a lithium-ion battery. J. Am. Chem. Soc. 2012, 134, 7874–7879.

26

Shen, L. F.; Uchaker, E.; Zhang, X. G.; Cao, G. Z. Hydrogenated Li4Ti5O12 nanowire arrays for high rate lithium ion batteries. Adv. Mater. 2012, 24, 6502–6506.

27

Shen, L. F.; Ding, B.; Nie, P.; Cao, G. Z.; Zhang, X. G. Advanced energy-storage architectures composed of spinel lithium, metal oxide nanocrystal on carbon textiles. Adv. Energy Mater. 2013, 3, 1484–1489.

28

Chen, S.; Xin, Y.; Zhou, Y. L.; Ma, Y. R.; Zhou, H. H.; Qi, L. M. Self-supported Li4Ti5O12 nanosheet arrays for lithium ion batteries with excellent rate capability and ultralong cycle life. Energy Environ. Sci. 2014, 7, 1924–1930.

29

Kim, J. G.; Shi, D.; Park, M. S.; Jeong, G.; Heo, Y. U.; Seo, M.; Kim, Y. J.; Kin, J. H.; Dou, S. X. Controlled Ag-driven superior rate-capability of Li4Ti5O12 anode for lithium rechargeable battery. Nano Res. 2013, 6, 365–372.

30

Ma, Y.; Ding, B.; Ji, G.; Lee, J. Y. Carbon-encapsulated F-doped Li4Ti5O12 as a high rate anode material for Li+ batteries. ACS Nano 2013, 7, 10870–10878.

31

Zhao, L.; Hu, Y. S.; Li, H.; Wang, Z. X.; Chen, L. Q. Porous Li4Ti5O12 coated with N-doped carbon from ionic liquids for Li-ion batteries. Adv. Mater. 2011, 23, 1385–1388.

32

Chen, X. B.; Liu, L.; Peter, Y. Y.; Mao, S. S. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 2011, 331, 746–750.

33

Wang, G. M.; Wang, H. Y.; Ling, Y. C.; Tang, Y. C.; Yang, X. Y.; Fitzmorris, R. C.; Wang, C. C.; Zhang, J. Z.; Li, Y. Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. Nano Lett. 2011, 11, 3026–3033.

34

Etacheri, V.; Yourey, J. E.; Bartlett, B. M. Chemically bonded TiO2-bronze nanosheet/reduced graphene oxide hybrid for high-power Li-ion batteries. ACS Nano 2014, 8, 1491–1499.

35

Song, T.; Han, H.; Choi, H.; Lee, J. W.; Park, H.; Lee, S.; Park, W. I.; Kim, S.; Liu, L.; Paik, U. TiO2 nanotubes branched tree on carbon nanofiber nanostructure as an anode for high energy and power lithium ion batteries. Nano Res. 2014, 7, 491–501.

36

Hosono, E.; Kudo, T.; Honma, I.; Matsuda, H.; Zhou, H. Synthesis of single crystalline spinel LiMn2O4 nanowires for a lithium ion battery with high power density. Nano Lett. 2009, 9, 1045–1051.

37

Xiao, X. L.; Lu, J.; Li, Y. D. LiMn2O4 microspheres: Synthesis, characterization and use as a cathode in lithium ion batteries. Nano Res. 2010, 3, 733–737.

38

Xiao, X. L.; Wang, L.; Wang, D. S.; He, X. M.; Peng, Q.; Li, Y. D. Hydrothermal synthesis of orthorhombic LiMnO2 nano-particles and LiMnO2 nanorods and comparison of their electrochemical performances. Nano Res. 2009, 2, 923–930.

File
nr-7-7-1073_ESM.pdf (1.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 19 February 2014
Revised: 01 April 2014
Accepted: 03 April 2014
Published: 04 June 2014
Issue date: July 2014

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014

Acknowledgements

Acknowledgements

We acknowledge the support from the National Natural Science Foundation (Nos.91123008 and 61377033),the 973 Program of China (No.2011CB933300),the Program for New Century Excellent Talents of the University in China (Grant No.NCET-11-0179),the Fundamental Research Funds for the Central Universities (No.HUST:2013NY013) and Wuhan Science and Technology Bureau (No.20122497).

Return