Journal Home > Volume 7 , Issue 7

To improve the contact between platinum catalyst and titanium substrate, a layer of TiO2 nanotube arrays has been synthesized before depositing Pt nanoflowers by pulse electrodeposition. Dramatic improvements in electrocatalytic activity (3×) and stability (60×) for methanol oxidation were found, suggesting promising applications in direct methanol fuel cells. The 3× and 60× improvements persist for Pt/Pd catalysts used to overcome the CO poisoning problem.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

A nanoporous oxide interlayer makes a better Pt catalyst on a metallic substrate: Nanoflowers on a nanotube bed

Show Author's information Hongyi Li1,2Jinshu Wang1( )Man Liu1Hong Wang1Penglei Su1Junshu Wu1Ju Li2( )
Key Laboratory of Advanced MaterialsCollege of Materials and EngineeringBeijing University of TechnologyBeijing100124China
Department of Nuclear Science and EngineeringDepartment of Materials Science and EngineeringMassachusetts Institute of TechnologyCambridgeMassachusetts02139USA

Abstract

To improve the contact between platinum catalyst and titanium substrate, a layer of TiO2 nanotube arrays has been synthesized before depositing Pt nanoflowers by pulse electrodeposition. Dramatic improvements in electrocatalytic activity (3×) and stability (60×) for methanol oxidation were found, suggesting promising applications in direct methanol fuel cells. The 3× and 60× improvements persist for Pt/Pd catalysts used to overcome the CO poisoning problem.

Keywords: catalytic activity, electrocatalyst, titanium dioxide nanotube, platinum nanoflower, cycle life

References(40)

1

Steele, B. C. H.; Heinzel A. Materials for fuel cell technologies. Nature 2001, 414, 345–352.

2

Wu, J. B.; Yang, H. Synthesis and electrocatalytic oxygen reduction properties of truncated octahedral Pt3Ni nanoparticles. Nano Res. 2011, 4, 72–82.

3

Wang, X. G.; Zhang, Z. H.; Tang, B.; Lin, N. M.; Hou, H. L.; Ma, Y. A facile preparation of novel Pt-decorated Ti electrode for methanol electro-oxidation by high-energy micro-arc cladding technique. J. Power Sources 2013, 230, 81–88.

4

Tiwari, J. N.; Tiwari, R. N.; Lin, K. L. Controlled synthesis and growth of perfect platinum nanocubes using a pair of low-resistivity fastened silicon wafers and their electrocatalytic properties. Nano Res. 2011, 4, 541–549.

5

Lu, Y. C.; Xu, Z. C.; Gasteiger, H. A.; Chen, S.; Kimberly, H. S.; Yang, S. H. Platinum–gold nanoparticles: A highly active bifunctional electrocatalyst for rechargeable lithium–air batteries. J. Am. Chem. Soc. 2010, 132, 12170–12171.

6

Chen, Z.; Yu, A. P.; Higgins, D.; Li, H.; Wang, H. J.; Chen, Z. W. Highly active and durable core-corona structured bifunctional catalyst for rechargeable metal–air battery application. Nano Lett. 2012, 12, 1946–1952.

7

Dong, S. M.; Chen, X.; Wang, S.; Gu, L.; Zhang, L. X.; Wang, X. G.; Zhou, X. H.; Liu, Z. H.; Han, P. X.; Duan, Y. L., et al. 1D coaxial platinum/titanium nitride nanotue arrays with enhanced electrocatalytic activity for the oxygen reduction reaction: Towards Li–air batteries. ChemSusChem 2012, 5, 1712–1715.

8

Liu, H.; Xing, Y. C. Influence of Li ions on the oxygen reduction reaction of platinum electrocatalyst. Electrochem. Commun. 2011, 13, 646–649.

9

Shirahata, S.; Hamasaki, T.; Teruya, K. Advanced research on the health benefit of reduced water. Trends Food Sci. Tech. 2012, 23, 124–131.

10

Hamasaki, T.; Kashiwagi, T.; Imada, T.; Nakamichi, N.; Aramaki, S.; Toh, K.; Morisawa, S.; Shimakoshi, H.; Hisaeda, Y.; Shirahata, S. Kinetic analysis of superoxide anion radical-scavenging and hydroxyl radical-scavenging activities of platinum nanoparticles. Langmuir 2008, 24, 7354–7364.

11

Hauch, A.; Georg, A. Diffusion in the electrolyte and charge-transfer reaction at the platinum electrode in dye-sensitized solar cells. Electrochim. Acta 2001, 46, 3457–3466.

12

Fu, N. Q.; Fang, Y. Y.; Duan, Y. D.; Zhou, X. W.; Xiao, X. R.; Lin, Y. High-performance plastic platinized counter electrode via photoplatinization technique for flexible dye-sensitized solar cells. ACS Nano 2012, 6, 9596–9605.

13

Zhang, S.; Ji, C. Y.; Bian, Z. Q.; Yu, P. R.; Zhang, L. H.; Liu, D. Y.; Shi, E. Z.; Shang, Y. Y.; Peng, H. T.; Cheng, Q. Porous, platinum nanoparticles-adsorbed carbon nanotube yarns for efficient fiber solar cells. ACS Nano 2012, 6, 7191–7198.

14

Gong, Y.; Li, C. H.; Huang, X. M.; Luo, Y. H.; Li, D. M.; Meng, Q. B.; Iversen, B. B. Simple method for manufacturing Pt counter electrodes on conductive plastic substrates for dye-sensitized solar cells. ACS Appl. Mater. Inter. 2013, 5, 795–800.

15

Hrapovic, S.; Liu, Y. L.; Male, K. B.; Luong, J. H. T. Electrochemical biosensing platforms using platinum nanoparticles and carbon nanotubes. Anal. Chem. 2004, 76, 1083–1088.

16

Yang, M. H.; Yang, Y. H.; Liu, Y. L.; Shen, G. L.; Yu, R. Q. Platinum nanoparticles-doped sol–gel/carbon nanotubes composite electrochemical sensors and biosensors. Biosens. Bioelectron. 2006, 21, 1125–1131.

17

Guo, S. J.; Wen, D.; Zhai, Y. M.; Dong, S. J.; Wang, E. K. Platinum nanoparticles ensemble-on-graphene hybrid nanosheet: One-pot, rapid synthesis, and used as new electrode materials for electrochemical sensing. ACS Nano 2010, 4, 3959–3968.

18

Mondal, S.; Sangaranarayanan, M. V. A novel non-enzymatic sensor for urea using a polypyrrole-coated platinum electrode. Sens. Actuators B 2013, 177, 478–486.

19

Kloke, A.; von Stetten, F.; Zengerle, R.; Kerzenmacher, S. Strategies for the fabrication of porous platinum electrode. Adv. Mater. 2011, 23, 4976–5008.

20

Fu, G. T.; Wu, K.; Jiang, X.; Tao, L.; Chen, Y.; Lin, J.; Zhou, Y. M.; Wei, S. H.; Tang, Y. W.; Lu, T. H.; Xia, X. H. Polyallylamine-directed green synthesis of platinum nanocubes. Shape and electronic effect codependent enhanced electrocatalytic activity. Phys. Chem. Chem. Phys. 2013, 15, 3793–3802.

21

Xu, J. F.; Fu, G. T.; Tang, Y. W.; Zhou, Y. M.; Chen, Y.; Lu, T. H. One-pot synthesis of three-dimensional platinum nanochain networks as stable and active electrocatalysts for oxygen reduction reactions. J. Mater. Chem. 2012, 22, 13585–13590.

22

Gong, D. W.; Grimes, C. A.; Varghese, O. K.; Hu, W. C.; Singh, R. S.; Chen, Z.; Dickey, E. C. Titanium oxide nanotube arrays prepared by anodic oxidation. J. Mater. Res. 2001, 16, 3331–3334.

23

Yang, M. J.; Zhu, J. L.; Liu, W.; Sun, J. L. Novel photodetectors based on double-walled carbon nanotube film/TiO2 nanotube array heterodimensional contacts. Nano Res. 2011, 4, 901–907.

24

Kim, J. Y.; Noh, J. H.; Zhu, K.; Halverson, A. F.; Neale, N. R.; Park, S.; Hong, K. S.; Frank A. J. General strategy for fabricating transparent TiO2 nanotube arrays for dye-sensitized photoelectrodes: Illumination geometry and transport properties. ACS Nano 2011, 5, 2647–2656.

25

Macak, J. M.; Tsuchiya, H.; Taveira, L.; Aldabergerova, S.; Schmuki, P. Smooth anodic TiO2 nanotubes. Angew. Chem. Int. Ed. 2005, 44, 7463–7465.

26

Guo, W. X.; Xue, X. Y.; Wang, S. H.; Lin, C. J.; Wang, Z. L. An integrated power pack of dye-sensitized solar cell and Li battery based on double-sided TiO2 nanotube arrays. Nano Lett. 2012, 12, 2520–2523.

27

Richter, C.; Schuttenmaer, C. A. Exciton-like trap states limit electron mobility in TiO2 nanotubes. Nat. Nanotechnol. 2010, 5, 769–772.

28

Li, H. Y.; Bai, X. D.; Ling, Y. H.; Li, J.; Zhang, D. L.; Wang, J. S. Fabrication of titania nanotubes as cathode protection for stainless steel. Electrochem. Solid State Lett. 2006, 9, B28–B31.

29

Varghese, O. K.; Paulose, M.; Grimes, C. A. Long vertically aligned titania nanotubes on transparent conducting oxide for highly efficient solar cells. Nat. Nanotechnol. 2009, 4, 592–597.

30

Lei, Y. Z.; Zhao, G. H.; Tong, X. L.; Liu, M. C.; Li, D. M.; Geng, R. High electrocatalytic activity of Pt–Pd binary spherocrystals chemically assembled in vertically alinghed TiO2 nanotubes. ChemPhysChem. 2010, 11, 276–284.

31

Li, H. Y.; Wang, J. S.; Huang, K. L.; Sun, G. S.; Zhou, M. L. In-situ preparation of multi-layer TiO2 nanotube array thin films by anodic oxidation method. Mater. Lett. 2011, 65, 1188–1190.

32

Wang, N.; Li, H. Y.; Lv, W. L.; Li, J. H.; Wang, J. S.; Zhang, Z. T.; Liu, Y. R. Effects of TiO2 nanotubes with different diameters on gene expression and osseointegration of implants in minipigs. Biomaterials 2011, 32, 6900–6911.

33

Zhang, X. Y.; Dong, D. H.; Li, D.; Williams, T.; Wang, H. T.; Webley, P. A. Direct electrodeposition of Pt nanotube arrays and their enhanced electrocatalytic activities. Electrochem. Commun. 2009, 11, 190–193.

34

Nielsch, K.; Muller, F.; Li, A. P.; Gosele, U. Uniform nickel deposition into ordered alumina pores by pulsed electrodeposition. Adv. Mater. 2000, 12, 582–586.

DOI
35

Macak, J. M.; Gong, B. G.; Hueppe, M.; Schmuki, P. Filling of TiO2 nanotubes by self-doping and electrodeposition. Adv. Mater. 2007, 19, 3027–3031.

36

Song, Y. Y.; Gao, Z. D.; Schmuki, P. Highly uniform Pt nanoparticle decoration on TiO2 nanotube arrays: A refreshable platform for methanol electrooxidation. Electrochem. Commun. 2011, 13, 290–293.

37

Zhang, H. M.; Zhou, W. Q.; Du, Y. K.; Yang, P.; Wang, C. Y. One-step electrodeposition of platinum nanoflowers and their high efficient catalytic activity for methanol electro-oxidation. Electrochem. Commun. 2010, 12, 882–885.

38

Watanabe, M.; Motoo, S. Electrocatalysis by ad-atoms. 2. Enhancement of oxidation of methanol on platinum by ruthenium ad-atoms. J. Electroanal. Chem. 1975, 60, 267–273.

39

Lim, B.; Jiang, M. J.; Carmargo, P. H. C.; Cho, E. C.; Tao, J.; Lu, X. M.; Zhu, Y. M.; Xia, Y. N. Pd–Pt bimetallic nanodendrites with high activity for oxygen reduction. Science 2009, 324, 1302–1305.

40

Kim, G. B.; Jhi, S. H. Carbon monoxide-tolerant platinum nanoparticle catalysts on defect-engineered graphene. ACS Nano 2011, 5, 805–810.

File
nr-7-7-1007_ESM.pdf (768.6 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 20 December 2013
Revised: 21 February 2014
Accepted: 31 March 2014
Published: 04 June 2014
Issue date: July 2014

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014

Acknowledgements

Acknowledgements

This work was financially supported by the National Outstanding Young Investigator Grant of China (No.51225401), the National Natural Science Foundation of China (No.51002004), the Beijing Municipal Commission of Education Foundation (Nos.KZ201010005001, KM201110005003).HYL also would like to acknowledge the fellowship from the China Scholarship Council and Rixin Talent authorized by Beijing University of Technology.JL acknowledges support by NSF DMR-1120901.

Return