Journal Home > Volume 7 , Issue 6

By utilizing poly(3-hexylthiophene) (P3HT) polymer nanowires with diameters of ~15 nm as the vertical channel material, a polymer nanowire vertical transistor has been demonstrated for the first time. The P3HT nanowires were characterized by absorption spectroscopy and scanning electron microscopy. A saturated output current was created by increasing the thickness of the polymer layers between the electrodes through several spin-coating cycles of the polymer nanowires prepared in a marginal solvent. The carrier mobility was also increased through utilization of polymer nanowires with strong interchain interactions. By introducing a small hole injection barrier between the emitter and semiconducting polymer, an on/off current ratio of 1, 500 was obtained. The operating voltage is less than 2 V.


menu
Abstract
Full text
Outline
About this article

Polymer nanowire vertical transistors

Show Author's information Husande LiTzushan ChenYuchiang Chao( )
Department of Physics and Center for Nano-TechnologyChung Yuan Christian UniversityChung-Li32023Taiwan

Abstract

By utilizing poly(3-hexylthiophene) (P3HT) polymer nanowires with diameters of ~15 nm as the vertical channel material, a polymer nanowire vertical transistor has been demonstrated for the first time. The P3HT nanowires were characterized by absorption spectroscopy and scanning electron microscopy. A saturated output current was created by increasing the thickness of the polymer layers between the electrodes through several spin-coating cycles of the polymer nanowires prepared in a marginal solvent. The carrier mobility was also increased through utilization of polymer nanowires with strong interchain interactions. By introducing a small hole injection barrier between the emitter and semiconducting polymer, an on/off current ratio of 1, 500 was obtained. The operating voltage is less than 2 V.

Keywords: colloidal lithography, polymer nanowires, vertical transistors, polystyrene spheres

References(35)

1

Lee, W. H.; Cho, J. H.; Cho, K. Control of mesoscale and nanoscale ordering of organic semiconductors at the gate dielectric/semiconductor interface for organic transistors. J. Mater. Chem. 2010, 20, 2549–2561.

2

Braga, D.; Horowitz, G. High-performance organic field-effect transistors. Adv. Mater. 2009, 21, 1473–1486.

3

Hasegawa, T.; Takeya, J. Organic field-effect transistors using single crystals. Sci. Technol. Adv. Mater. 2009, 10, 024314.

4

Chao, Y. C.; Yang, S. L.; Meng, H. F.; Horng, S. F. Polymer hot-carrier transistor. Appl. Phys. Lett. 2005, 87, 253508.

5

Chao, Y. C.; Xie, M. H.; Dai, M. Z.; Meng, H. F.; Horng, S. F.; Hsu, C. S. Polymer hot-carrier transistor with low bandgap emitter. Appl. Phys. Lett. 2008, 92, 093310.

6

Cheng, S. S.; Ramesh, M.; Chen, G. Y.; Fung, C. L.; Chen, L. M.; Wu, M. C.; Lin, H. C.; Chu, C. W. A cascade energy band structure enhances the carrier energy in organic vertical-type triodes. Org. Electron. 2013, 14, 2284–2289.

7

Cheng, S. S.; Chen, G. Y.; Chen, J. H.; Wu, M. C.; Chu, C. W. Low-voltage complementary inverters employing organic vertical-type triodes. Org. Electron. 2010, 11, 692–695.

8

Yang, C. Y.; Ou, T. M.; Cheng, S. S.; Wu, M. C.; Lin, S. Y.; Chan, I. M.; Chan, Y. J. Vertical organic triodes with a high current gain operated in saturation region. Appl. Phys. Lett. 2006, 89, 183511.

9

Huang, J.; Ma, D.; Hümmelgen, I. A. Performance of hybrid p-type vertical transistors with poly(N-vinylcarbazole) as emitter and the transfer mechanism of charge carriers through the base. Semicond. Sci. Technol. 2013, 28, 115001.

10

Nakayama, K. I.; Fujimoto, S. Y.; Yokoyama, M. High-current and low-voltage operation of metal-base organic transistors with LiF/Al emitter. Appl. Phys. Lett. 2006, 88, 153512.

11

Yi, M.; Xia, X.; Yang, T.; Liu, Y.; Xie, L.; Zhou, X.; Huang, W. Vertical n-type organic transistors with tri(8-hydroxyquinoline) aluminum as collector and fullerene as emitter. Appl. Phys. Lett. 2011, 98, 073309.

12

Chao, Y. C.; Ku, M. C.; Tsai, W. W.; Zan, H. W.; Meng, H. F.; Tsai, H. K.; Horng, S. F. Polymer space-charge-limited transistor as a solid-state vacuum tube triode. Appl. Phys. Lett. 2010, 97, 223307.

13

Chao, Y. C.; Lin, Y. C.; Dai, M. Z.; Zan, H. W.; Meng, H. F. Reduced hole injection barrier for achieving ultralow voltage polymer space-charge-limited transistor with a high on/off current ratio. Appl. Phys. Lett. 2009, 95, 203305.

14

Yang, Y.; Heeger, A. J. A new architecture for polymer transistors. Nature 1994, 372, 344–346.

15

McElvain, J.; Keshavarz, M.; Wang, H.; Wudl, F.; Heeger, A. J. Fullerene-based polymer grid triodes. J. Appl. Phys. 1997, 81, 6468–6472.

16

Kudo, K.; Wang, D. X.; Iizuka, M.; Kuniyoshi, S.; Tanaka, K. Schottky gate static induction transistor using copper phthalocyanine films. Thin Solid Films 1998, 331, 51–54.

17

Watanabe, Y.; Iechi, H.; Kudo, K. Electrical characteristics of flexible organic static induction transistors under bending conditions. Appl. Phys. Lett. 2006, 89, 233509.

18

Fujimoto, K.; Hiroi, T.; Kudo, K.; Nakamura, M. High-performance, vertical-type organic transistors with built-in nanotriode arrays. Adv. Mater. 2007, 19, 525–530.

19

Fujimoto, K.; Hiroi, T.; Nakamura, M. Organic static induction transistors with nano-hole arrays fabricated by colloidal lithography. e-J. Surf. Sci. Nanotechnol. 2005, 3, 327–331.

20

Ohashi, N.; Nakamura, M.; Muraishi, N.; Sakai, M.; Kudo, K. Fabrication and device simulation of single nano-scale organic static induction transistors. IEICE Trans. Electron. 2006, E89, 1765–1770.

21

Chao, Y. C.; Meng, H. F.; Horng, S. F. Polymer space-charge-limited transistor. Appl. Phys. Lett. 2006, 88, 223510.

22

Chao, Y. C.; Meng, H. F.; Horng, S. F.; Hsu, C. S. High-performance solution-processed polymer space-charge-limited transistor. Org. Electron. 2008, 9, 310–316.

23

Rossi, L.; Serbena, J. P. M.; Meruvia, M. S.; Hümmelgen, I. A.; Stori, E. M.; Saul, C. K.; Wang, Z. Y. Hybrid vertical architecture transistor with 2, 6-Diphenylindenofluorene based emitter and base permeability controlled by polystyrene spheres lithography. J. Nanosci. Nanotechnol. 2010, 10, 2389–2393.

24

Rossi, L.; Seidel, K. F.; Machado, W. S.; Hümmelgen, I. A. Low voltage vertical organic field-effect transistor with polyvinyl alcohol as gate insulator. J. Appl. Phys. 2011, 110, 094508.

25

Li, S. H.; Xu, Z.; Yang, G.; Ma, L.; Yang, Y. Solution-processed poly(3-hexylthiophene) vertical organic transistor. Appl. Phys. Lett. 2008, 93, 213301.

26

Chao, Y. C.; Wang, K. R.; Meng, H. F.; Zan, H. W.; Hsu, Y. H. Large-area non-close-packed nanosphere deposition by blade coating for vertical space-charge-limited transistor. Org. Electron. 2012, 13, 3177–3182.

27

Fischer, A.; Scholz, R.; Leo, K.; Lüssem. B. An all C60 vertical transistor for high frequency and high current density applications. Appl. Phys. Lett. 2012, 101, 213303.

28

Li, C. H.; Stehlin, F.; Wang, K. R.; Lin, Y. H.; Wieder, F.; Soppera, O.; Zan, H. W.; Meng, H. F. Achieving saturation in vertical organic transistors for organic light-emitting diode driving by nanorod channel geometric control. Appl. Phys. Lett. 2013, 102, 163305.

29

Lin, Y. H.; Chang, Y. F.; Meng, H. F.; Zan, H. W.; Hsu, W.; Chen, C. H. Soldering of solution-processed organic vertical transistor and light-emitting diode on separate glass substrates by tin micro-balls. Org. Electron. 2013, 14, 3052–3060.

30

Kim, J. H.; Park, J. H.; Lee, J. H.; Kim, J. S.; Sim, M.; Shim, C.; Cho, K. Bulk heterojunction solar cells based on preformed polythiophene nanowires via solubility-induced crystallization. J. Mater. Chem. 2010, 20, 7398–7405.

31

Wang, T.; Dunbar, A. D. F.; Staniec, P. A.; Pearson, A. J.; Hopkinson, P. E.; MacDonald, J. E.; Lilliu, S.; Pizzey, C.; Terrill, N. J.; Donald, A. M. et al. The development of nanoscale morphology in polymer: Fullerene photovoltaic blends during solvent casting. Soft Matter 2010, 6, 4128–4134.

32

Brown, P. J.; Thomas, D. S.; Köhler, A.; Wilson, J. S.; Kim, J. S.; Ramsdale, C. M.; Sirringhaus, H.; Friend, R. H. Effect of interchain interactions on the absorption and emission of poly(3-hexylthiophene). Phys. Rev. B 2003, 67, 064203.

33

Chiguvare, Z.; Parisi, J.; Dyakonov, V. Current limiting mechanisms in indium-tin-oxide/poly3-hexylthiophene/aluminum thin film devices. J. Appl. Phys. 2003, 94, 2440–2448.

34

Kim, S. Y.; Lee, J. L.; Kim, K. B.; Tak, Y. H. Effect of ultraviolet–ozone treatment of indium–tin–oxide on electrical properties of organic light emitting diodes. J. Appl. Phys. 2004, 95, 2560–2563.

35

Choulis, S. A.; Choong, V. E.; Patwardhan, A.; Mathai, M. K.; So, F. Interface modification to improve hole-injection properties in organic electronic devices. Adv. Funct. Mater. 2006, 16, 1075–1080.

Publication history
Copyright
Acknowledgements

Publication history

Received: 21 January 2014
Revised: 07 March 2014
Accepted: 21 March 2014
Published: 26 May 2014
Issue date: June 2014

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014

Acknowledgements

Acknowledgements

This work was supported by the Science Council under grant number NSC100-2112-M-033-008-MY3.

Return