Journal Home > Volume 7 , Issue 6

A study of the surface assisted self-assembly of 1, 2, 4, 5-tetracyanobenzene (TCNB) acceptor molecules and Fe atoms on an Au(111) surface is presented. While conditions to get the two-dimensional arrays of stable Fe(TCNB)4 complexes are clearly identified, ultrahigh vacuum scanning tunneling microscopy and spectroscopy (STM/STS) coupled with first-principles calculations reveals that situations may occur where Fe and TCNB survive on the surface (as Fe–4TCNB entities) at a higher density than the original molecular monolayer without forming coordination bonds with each other. It is found that the square planar coordination of the Fe(TCNB)4 monomer complexes cannot fully develop in the presence of lateral strain due to growth-induced confinement. A phenomenon similar to steric hindrance involving a strongly modified chirality with a Fe–N–C bond angle of 120° compared to the 180° for the stable complex may then explain why the Fe atom keeps its metallic bond with the surface. The competition between steric and electronic effects, not reported before, may arise elsewhere in surface chemistry involved in the synthesis of new and potentially useful organic nanomaterials.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Steric and electronic selectivity in the synthesis of Fe– 1, 2, 4, 5-tetracyanobenzene (TCNB) complexes on Au(111): From topological confinement to bond formation

Show Author's information Shawulienu Kezilebieke1Anis Amokrane1Mauro Boero1Sylvain Clair2Mathieu Abel2Jean-Pierre Bucher1( )
Institut de Physique et Chimie des Matériaux de StrasbourgCNRS UMR 7504, Université de StrasbourgF-67034Strasbourg, France
Université Aix-Marseille, M2NP, CNRS UMR 7334Université Aix-Marseille, Campus de Saint-JérômeCase 142F-13397Marseille Cedex 20, France

Abstract

A study of the surface assisted self-assembly of 1, 2, 4, 5-tetracyanobenzene (TCNB) acceptor molecules and Fe atoms on an Au(111) surface is presented. While conditions to get the two-dimensional arrays of stable Fe(TCNB)4 complexes are clearly identified, ultrahigh vacuum scanning tunneling microscopy and spectroscopy (STM/STS) coupled with first-principles calculations reveals that situations may occur where Fe and TCNB survive on the surface (as Fe–4TCNB entities) at a higher density than the original molecular monolayer without forming coordination bonds with each other. It is found that the square planar coordination of the Fe(TCNB)4 monomer complexes cannot fully develop in the presence of lateral strain due to growth-induced confinement. A phenomenon similar to steric hindrance involving a strongly modified chirality with a Fe–N–C bond angle of 120° compared to the 180° for the stable complex may then explain why the Fe atom keeps its metallic bond with the surface. The competition between steric and electronic effects, not reported before, may arise elsewhere in surface chemistry involved in the synthesis of new and potentially useful organic nanomaterials.

Keywords: self-assembly, surface state, chirality, scanning tunneling spectroscopy, STM, steric hindrance, metal-organic coordination, nanochemistry

References(30)

1

de Oteyza, D. G.; Gorman, P.; Chen, Y. -C.; Wickenburg, S.; Riss, A.; Mowbray, D. J.; Etkin, G.; Pedramrazi, Z.; Tsai, H. -Z.; Rubio, A., et al. Direct imaging of covalent bond structure in single-molecule chemical reactions. Science 2013, 340, 1434–1437.

2

Hla, S. -W.; Bartels, L.; Meyer, G.; Rieder, K. -H. Inducing all steps of a chemical reaction with the scanning tunneling microscope tip: Towards single molecule engineering. Phys. Rev. Lett. 2000, 85, 2777–2780.

3

Repp, J.; Meyer, G.; Paavilainen, S.; Olsson, F. E.; Persson, M. Imaging bond formation between a gold atom and pentacene on an insulating surface. Science 2006, 312, 1196–1199.

4

Barth, J. V. Molecular architectonic on metal surfaces. Annu. Rev. Phys. Chem. 2007, 58, 375–407.

5

Ruben, M.; Rojo, J.; Romero-Salguero, F. J.; Uppadine, L. H.; Lehn, J. -M. Grid-type metal ion architectures: Functional metallosupramolecular arrays. Angew. Chem. Int. Ed. 2004, 43, 3644–3662.

6

Stepanow, S.; Lingenfelder, M.; Dmitriev, A.; Spillmann, H.; Delvigne, E.; Lin, N.; Deng, X. B.; Cai, C. Z.; Barth, J. V.; Kern, K. Steering molecular organization and host–guest interactions using two-dimensional nanoporous coordination systems. Nat. Mater. 2004, 3, 229–233.

7

Messina, P.; Dmitriev, A.; Lin, N.; Spillmann, H.; Abel, M.; Barth, J. V.; Kern, K. Direct observation of chiral metal–organic complexes assembled on a Cu(100) surface. J. Am. Chem. Soc. 2002, 124, 14000–14001.

8

Dmitriev, A.; Spillmann, H.; Ligenfelder, M.; Lin, N.; Barth, J. V.; Kern, K. Design of extended surface-supported chiral metal–organic arrays comprising mononuclear iron centers. Langmuir 2004, 20, 4799–4801.

9

Gambardella, P.; Stepanow, S.; Dmitriev, A.; Honolka, J.; de Groot, F. M. F.; Lingenfelder, M.; Gupta, S. S.; Sarma, D. D.; Bencok, P.; Stanescu, S., et al. Supramolecular control of the magnetic anisotropy in two-dimensional high-spin Fe arrays at a metal interface. Nat. Mater. 2009, 8, 189–193.

10

Schlickum, U.; Decker, R.; Klappenberger, F.; Zoppellaro, G.; Klyatskaya, S.; Ruben, M.; Silanes, I.; Arnau, A.; Kern, K.; Brune, H., et al. Metal–organic honeycomb nanomeshes with tunable cavity size. Nano Lett. 2007, 7, 3813–3817.

11

Schlickum, U.; Klappenberger, F.; Decker, R.; Zoppellaro, G.; Klyatskaya, S.; Ruben, M.; Kern, K.; Brune, H.; Barth, J. V. Surface-confined metal–organic nanostructures from Co-directed assembly of linear terphenyl-dicarbonitrile linkers on Ag(111). J. Phys. Chem. C 2010, 114, 15602–15606.

12

Abdurakhmanova, N.; Tseng, T. -C.; Langner, A.; Kley, C. S.; Sessi, V.; Stepanow, S.; Kern, K. Superexchange-mediated ferromagnetic coupling in two-dimensional Ni–TCNQ networks on metal surfaces. Phys. Rev. Lett. 2013, 110, 027202.

13

Tseng, T. -C.; Abdurakhmanova, N.; Stepanow, S.; Kern, K. Hierarchical assembly and reticulation of two-dimensional Mn- and Ni–TCNQx (x = 1, 2, 4) coordination structures on a metal surface. J. Phys. Chem. C 2011, 115, 10211–10217.

14

Faraggi, M. N.; Jiang, N.; Gonzalez-Lakunza, N.; Langner, A.; Stepanow, S.; Kern, K.; Arnau, A. Bonding and charge transfer in metal–organic coordination networks on Au(111) with strong acceptor molecules. J. Phys. Chem. C 2012, 116, 24558–24565.

15

Abdurakhmanova, N.; Floris, A.; Tseng, T. -C.; Comisso, A.; Stepanow, S.; De Vita, A.; Kern, K. Stereoselectivity and electrostatics in charge-transfer Mn– and Cs–TCNQ4 networks on Ag(100). Nat. Commun. 2012, 3, 940.

16

Yang, H. -H.; Chu, Y. -H.; Lu, C. -I.; Yang, T. -H.; Yang, K. -J.; Kaun, C. -C.; Hoffmann, G.; Lin, M. -T. Digitized charge transfer magnitude determined by metal–organic coordination number. ACS Nano, 2013, 7, 2814–2819.

17

Wang, W. H.; Shi, X. Q.; Wang, S. Y.; Liu, J.; Van Hove, M. A.; Liu, P. N.; Zhang, R. -Q.; Lin, N. Cooperative modulation of electronic structures of aromatic molecules coupled to multiple metal contacts. Phys. Rev. Lett. 2013, 110, 046802.

18

Wegner, D.; Yamachika, R.; Wang, Y. Y.; Brar, V. W.; Bartlett, B. M.; Long, J. R.; Crommie, M. F. Single-molecule charge transfer and bonding at an organic/inorganic interface: Tetracyanoethylene on noble metals. Nano Lett. 2008, 8, 131–135.

19

Abel, M.; Clair, S.; Ourdjini, O.; Mossoyan, M.; Porte, L. Single layer of polymeric Fe–phthalocyanine: An organometallic sheet on metal and thin insulating film. J. Am. Chem. Soc. 2011, 133, 1203–1205.

20

Repp, J.; Meyer, G.; Rieder, K. -H. Snell's law for surface electrons: Refraction of an electron gas imaged in real space. Phys. Rev. Lett. 2004, 92, 036803.

21

Temirov, R.; Soubatch, S.; Luican, A.; Tautz F. S. Free-electron-like dispersion in an organic monolayer film on a metal substrate. Nature 2006, 444, 350–353.

22

Heinrich, B. W.; Limot, L.; Rastei, M. V.; Iacovita, C.; Bucher, J. P.; Djimbi, D. M.; Massobrio, C.; Boero, M. Dispersion and localization of electronic atates at a ferrocene/Cu(111) interface. Phys. Rev. Lett. 2011, 107, 216801.

23

Ziroff, J.; Gold, P.; Bendounan, A.; Forster, F.; Reinert, F. Adsorption energy and geometry of physisorbed organic molecules on Au(111) probed by surface-state photoemission. Surf. Sci. 2009, 603, 354–358.

24

Hückstädt, C.; Schmidt, S.; Hüfner, S.; Forster, F.; Reinert, F.; Springborg, M. Work function studies of rare-gas/noble metal adsorption systems using a Kelvin probe. Phys. Rev. B 2006, 73, 075409.

25

Rangger, G. M.; Romaner, L.; Hofmann, O. T.; Heimel, G.; Ramsey, M. G.; Zojer, E. Analysis of bonding between conjugated organic molecules and noble metal surfaces using orbital overlap populations. J. Chem. Theory Comput. 2010, 6, 3481–3489.

26

Madhavan, V.; Chen, W.; Jamneala, T.; Crommie, M. F.; Wingreen, N. S. Local spectroscopy of a Kondo impurity: Co on Au(111). Phys. Rev. B 2001, 64, 165412.

27

Olsson, F. E.; Persson, M.; Borisov, A. G.; Gauyacq, J. -P.; Lagoute, J.; Fölsch, S. Localization of the Cu(111) surface state by single Cu adatoms. Phys. Rev. Lett. 2004, 93, 206803.

28

Boero, M.; Terakura, K.; Ikeshoji, T.; Liew, C. C.; Parrinello, M. Hydrogen bonding and dipole moment of water at supercritical conditions: A first-principles molecular dynamics study. Phys. Rev. Lett. 2000, 85, 3245–3248.

29

Yu, M.; Xu, W.; Kalashnyk, N.; Benjalal, Y.; Nagarajan, S.; Masini, F.; Lægsgaard, E.; Hliwa, M.; Bouju, X.; Gourdon, A., et al. From zero to two dimensions: Supramolecular nanostructures formed from perylene-3, 4, 9, 10-tetracarboxylic diimide (PTCDI) and Ni on the Au(111) surface through the interplay between hydrogen-bonding and electrostatic metal–organic interactions. Nano Res. 2012, 5, 903–916.

30

Isvoranu, C.; Wang, B.; Ataman, E.; Schulte, K.; Knudsen, J.; Andersen, J. N.; Bocquet, M. -L.; Schnadt, J. Pyridine adsorption on single-layer iron phthalocyanine on Au(111). J. Phys. Chem. C 2011, 115, 20201–20208.

File
nr-7-6-888_ESM.pdf (1.3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 17 November 2013
Revised: 10 February 2014
Accepted: 11 March 2014
Published: 13 May 2014
Issue date: June 2014

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014

Acknowledgements

Acknowledgements

This work was supported by the International Center for Frontier Research in Chemistry (Grant No. FRC-2010-JBu-0001) and the Institut Universitaire de France (IUF).

Return