AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

High resolution scanning gate microscopy measurements on InAs/GaSb nanowire Esaki diode devices

James L. Webb1( )Olof Persson1Kimberly A. Dick2Claes Thelander3Rainer Timm1Anders Mikkelsen1
Division of Synchrotron Radiation ResearchLund UniversityLundSweden
Center for Analysis and SynthesisLund UniversityLundSweden
Division of Solid State PhysicsLund UniversityLundSweden
Show Author Information

Graphical Abstract

Abstract

Gated transport measurements are the backbone of electrical characterization of nanoscale electronic devices. Scanning gate microscopy (SGM) is one such gating technique that adds crucial spatial information, accessing the localized properties of semiconductor devices. Nanowires represent a central device concept due to the potential to combine very different materials. However, SGM on semiconductor nanowires has been limited to a resolution in the 50–100 nm range. Here, we present a study by SGM of newly developed Ⅲ-Ⅴ semiconductor nanowire InAs/GaSb heterojunction Esaki tunnel diode devices under ultra-high vacuum. Sub-5 nm resolution is demonstrated at room temperature via use of quartz resonator atomic force microscopy sensors, with the capability to resolve InAs nanowire facets, the InAs/GaSb tunnel diode transition and nanoscale defects on the device. We demonstrate that such measurements can rapidly give important insight into the device properties via use of a simplified physical model, without the requirement for extensive calculation of the electrostatics of the system. Interestingly, by precise spatial correlation of the device electrical transport properties and surface structure we show the position and existence of a very abrupt (< 10 nm) electrical transition across the InAs/GaSb junction despite the change in material composition occurring only over 30–50 nm. The direct and simultaneous link between nanostructure composition and electrical properties helps set important limits for the precision in structural control needed to achieve desired device performance.

References

1

Wallentin, J.; Anttu, N.; Asoli, D.; Huffman, M.; Åberg, I.; Magnusson, M. H.; Siefer, G.; Fuss-Kailuweit, P.; Dimroth, F.; Witzigmann, B.; et al. InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit. Science 2013, 339, 1057–1060.

2

Duan, X.; Huang, Y.; Cui, Y.; Wang, J.; Lieber, C. M. Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature 2011, 409, 66–69.

3

Tomioka, K.; Motohisa, J.; Hara, S.; Hiruma, K.; Fukui, T. GaAs/AlGaAs core multishell nanowire-based light-emitting diodes on Si. Nano Lett. 2010, 10, 1639–1644.

4

Borg, B. M.; Ek, M.; Ganjipour, B.; Dey, A. W.; Dick, K. A.; Wernersson, L. -E.; Thelander, C. Influence of doping on the electronic transport in GaSb/InAs(Sb) nanowire tunnel devices. Appl. Phys. Lett. 2012, 101, 043508.

5

Egard, M.; Johansson, S.; Johansson, A. -C.; Persson, K. -M.; Dey, A. W.; Borg, B. M.; Thelander, C.; Wernersson, L. -E.; Lind, E. Vertical InAs nanowire wrap gate transistors with ft > 7 GHz and fmax > 20 GHz. Appl. Phys. Lett. 2010, 10, 809–812.

6

Ford, A. C.; Ho, J. C.; Chueh, Y. -L.; Tseng, Y. -C.; Fan, Z.; Guo, J.; Bokor, J.; Javey, A. Diameter-dependent electron mobility of InAs nanowires. Nano Lett. 2009, 9, 360–365.

7

Mourik, V.; Zuo, K.; Frolov, S. M.; Plissard, S. R.; Bakkers, E. P. A. M.; Kouwenhoven, L. P. Signatures of Majorana fermions in hybrid superconductor–semiconductor nanowire devices. Science 2012, 336, 1003–1007.

8

Deng, M. T.; Yu, C. L.; Huang, G. Y.; Larsson, M.; Caroff, P.; Xu, H. Q. Anomalous zero-bias conductance peak in a Nb–InSb nanowire–Nb hybrid device. Nano Lett. 2012, 12, 6414–6419.

9

Bulgarini, G.; Reimer, M. E.; Hocevar, M.; Bakkers, E. P. A. M.; Kouwenhoven, L. P.; Zwiller, V. Avalanche amplification of a single exciton in a semiconductor nanowire. Nat. Photonics 2012, 6, 455–458.

10

Spirkoska, D.; Arbiol, J.; Gustafsson, A.; Conesa-Boj, S.; Glas, F.; Zardo, I.; Heigoldt, M.; Gass, M. H.; Bleloch, A. L.; Estrade, S.; et al. Structural and optical properties of high quality zinc-blende/wurtzite GaAs nanowire heterostructures. Phys. Rev. B 2009, 80, 245325.

11

Sakaki, H.; Chang, L. L.; Ludeke, R.; Chang, C. -A.; Sai-Halasz, G. A.; Esaki, L. In1–xGaxAs–GaSb1–yAsy heterojunctions by molecular beam epitaxy. Appl. Phys. Lett. 1977, 31, 211–213.

12

Ek, M.; Borg, B. M.; Dey, A. W.; Ganjipour, B.; Thelander, C.; Wernersson, L. -E.; Dick, K. A. Formation of the axial heterojunction in GaSb/InAs(Sb) nanowires with high crystal quality. Cryst. Growth Des. 2011, 11, 4588–4593.

13

Wernersson, L. -E.; Thelander, C.; Lind, E.; Samuelson, L. Ⅲ-Ⅴ nanowires: Extending a narrowing road. P. IEEE 2010, 98, 2047–2060.

14

Dey, A. W.; Borg, B. M.; Ganjipour, B.; Ek, M.; Thelander, K. D.; Lind, E.; Thelander, C.; Wernersson, L. -E. High-current GaSb/InAs(Sb) nanowire tunnel field-effect transistors. Electron Device Lett. 2013, 34, 211–213.

15

Knez, I.; Du, R. -R. Quantum spin Hall effect in inverted InAs/GaSb quantum wells. Frontiers Phys. 2012, 7, 200–207.

16

Hjort, M.; Wallentin, J.; Timm, R.; Zakharov, A. A.; Håkanson, U.; Andersen, J. N.; Lundgren, E.; Samuelson, L.; Borgström, M. T.; Mikkelsen, A. Surface chemistry, structure, and electronic properties from microns to the atomic scale of axially doped semiconductor nanowires. ACS Nano 2012, 6, 9679–9689.

17

Hilner, E.; Håkanson, U.; Fröberg, L. E.; Karlsson, M.; Kratzer, P.; Lundgren, E.; Samuelson, L.; Mikkelsen, A. Direct atomic scale imaging of Ⅲ-Ⅴ nanowire surfaces. Nano Lett. 2008, 8, 3978–3982.

18

Hjort, M.; Lehmann, S.; Knutsson, J.; Timm, R.; Jacobsson, D.; Lundgren, E.; Dick, K.; Mikkelsen, A. Direct imaging of atomic scale structure and electronic properties of GaAs wurtzite and zinc blende nanowire surfaces. Nano Lett. 2013, 13, 4492–4498.

19

Boyd, E. E.; Storm, K.; Samuelson, L.; Westervelt, R. M. Scanning gate imaging of quantum dots in 1D ultra-thin InAs/InP nanowires. Nanotechnology 2011, 22, 185201.

20

Zhukov, A. A.; Volk, C.; Winden, A.; Hardtdegen, H.; Schäpers, T. Low-temperature conductance of the weak junction in InAs nanowire in the field of AFM scanning gate. JETP Lett. 2011, 93, 10–14.

21

Zhukov, A.; Volk, C.; Winden, A.; Hardtdegen, H.; Schäpers, T. Distortions of the Coulomb blockade conductance line in scanning gate measurements of InAs nanowire based quantum dots. J. Exp. Theor. Phys. 2013, 116, 138–144.

22

Liu, J.; Cai, Z.; Koley, G. Charge transport and trapping in InN nanowires investigated by scanning probe microscopy. J. Appl. Phys. 2009, 106, 124907.

23

Martin, D.; Heinzig, A.; Grube, M.; Geelhaar, L.; Mikolajick, T.; Riechert, H.; Weber, W. M. Direct probing of Schottky barriers in Si nanowire Schottky barrier field effect transistors. Phys. Rev. Lett. 2011, 107, 216807.

24

Kim, Y.; Oh, Y. M.; Park, J. -Y.; Kahng, S. -J. Mapping potential landscapes of semiconducting carbon nanotubes with scanning gate microscopy. Nanotechnology 2007, 18, 475712.

25

Aoki, N.; Burke, A.; da Cunha, C. R.; Akis, R.; Ferry, D. K.; Ochiai, Y. Study of quantum point contact via low temperature scanning gate microscopy. J. Phys. Conf. Ser. 2006, 38, 79–82.

26

Aoki, N.; da Cunha, C. R.; Akis, R.; Ferry, D. K.; Ochiai, Y. Scanning gate microscopy investigations on an InGaAs quantum point contact. Appl. Phys. Lett. 2005, 87, 223501.

27

Bae, S. -S.; Prokopuk, N.; Quitoriano, N. J.; Adams, S. M.; Ragan, R. Characterizing defects and transport in Si nanowire devices using Kelvin probe force microscopy. Nanotechnology 2012, 23, 405706.

28

Fuller, E. J.; Pan, D.; Corso, B. L.; TolgaGul, O.; Gomez, J. R.; Collins, P. G. QuantitativeKelvin probe force microscopy of current-carrying devices. Appl. Phys. Lett. 2013, 102, 083503.

29

Allen, J. E.; Hemesath, E. R.; Lauhon, L. J. Scanning photocurrent microscopy analysis of Si nanowire field-effect transistors fabricated by surface etching of the channel. Nano Lett. 2009, 9, 1903–1908.

30

Dey, A. W.; Svensson, J.; Borg, B. M.; Ek, M.; Wernersson, L. -E. Single InAs/GaSb nanowire low-power CMOS inverter. Nano Lett. 2012, 12, 5593–5597.

31

Borg, B. M.; Dick, K. A.; Ganjipour, B.; Pistol, M. -E.; Wernersson, L. -E.; Thelander, C. InAs/GaSb heterostructure nanowires for tunnel field-effect transistors. Nano Lett. 2010, 10, 4080–4085.

32

Wallentin, J.; Persson, J. M.; Wagner, J. B.; Samuelson, L.; Deppert, K.; Borgström, M. T. High-performance single nanowire tunnel diodes. Nano Lett. 2010, 10, 974–979.

33

Ganjipour, B.; Dey, A. W.; Borg, B. M.; Ek, M.; Pistol, M. -E.; Dick, K. A.; Wernersson, L. -E.; Thelander, C. High current density Esaki tunnel diodes based on GaSb–InAsSb heterostructure nanowires. Nano Lett. 2011, 11, 4222–4226.

34

Zhou, X.; Dayeh, S. A.; Wang, D.; Yu, E. T. Scanning gate microscopy of InAs nanowires. Appl. Phys. Lett. 2007, 90, 233118.

35

Yang, C.; Barrelet, C. J.; Capasso, F.; Lieber, C. M. Single p-type/intrinsic/n-type silicon nanowires as nanoscale avalanche photodetectors. Nano Lett. 2006, 6, 2929–2934.

36

Giessibl, F. J. Atomic resolution on Si(111)-7x7 by noncontact atomic force microscopy with a force sensor based on a quartz tuning fork. Appl. Phys. Lett. 2000, 76, 1470–1472.

37

Ternes, M.; Lutz, C. P.; Hirjibehedin, C. F.; Giessibl, F. J.; Heinrich, A. J. The force needed to move an atom on a surface. Science 2008, 319, 1066–1069.

38

Giessibl, F. J. Principles and applications of the qPlus sensor. In Noncontact Atomic Force Microscopy, Morita, S.; Giessibl, F. J.; Wiesendanger, R., Eds; Springer: Berlin, Heidelberg, 2009; pp. 121–142.

39

Pelliccione, M.; Sciambi, A.; Bartel, J.; Keller, A. J.; Goldhaber-Gordon, D. Design of a scanning gate microscope for mesoscopic electron systems in a cryogen-free dilution refrigerator. Rev. Sci. Instrum. 2013, 84, 033703.

40

Wilson, N. R.; Cobden, D. H. Tip-modulation scanned gate microscopy. Nano Lett. 2008, 8, 2161–2165.

41

Sze, S. M. Physics of Semiconductor Devices, 2nd ed.; Wiley, 1981.

42

Schroer, M. D.; Petta, J. R. Correlating the nanostructure and electronic properties of InAs nanowires. Nano Lett. 2010, 10, 1618–1622.

43

Howell, S. L.; Padalkar, S.; Yoon, K.; Li, Q.; Koleske, D. D.; Wierer, J. J.; Wang, G. T.; Lauhon, L. J. Spatial mapping of efficiency of GaN/InGaN nanowire array solar cells using scanning photocurrent microscopy. Nano Lett. 2013, 13, 5123–5128.

44

Ek, M.; Borg, B. M.; Johansson, J.; Dick, K. A. Diameter limitation in growth of Ⅲ–Sb-containing nanowire heterostructures. ACS Nano 2013, 7, 3668–3675.

45

Giessibl, F. J. Advances in atomic force microscopy. Rev. Mod. Phys. 2003, 75, 949–983.

Nano Research
Pages 877-887
Cite this article:
Webb JL, Persson O, Dick KA, et al. High resolution scanning gate microscopy measurements on InAs/GaSb nanowire Esaki diode devices. Nano Research, 2014, 7(6): 877-887. https://doi.org/10.1007/s12274-014-0449-4

707

Views

14

Crossref

N/A

Web of Science

15

Scopus

0

CSCD

Altmetrics

Received: 17 December 2013
Revised: 27 February 2014
Accepted: 11 March 2014
Published: 03 June 2014
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014
Return