Journal Home > Volume 7 , Issue 6

Detection and analysis of volatile organic compounds (VOCs) as pollutants in the atmosphere and liquids are of great significance because of the detrimental effects of VOCs. A polymer-coated graphene micro-tube piping (GMP) structure with a cross-linked and interconnected channel network was synthesized for liquid sensing. By virtue of their unique cross-linked and interconnected channel network configuration, polycrystalline conformation, and the support of a polymer layer, the resistivity of the 3D hollow micro-tubing GMPs was sensitive to strain, ensuring high sensitivity of the liquid sensor (R/R0 of ~4 × 103% for pure acetone and R/R0 of ~105% for 0.01 wt.% acetone solution). Due to the capillary force, the interfaces of the 3D structures can speed up the penetration of solvents into the polymer, thus promote distinct selectivity within seconds and significantly decrease the response time. Owing to their good selectivity, high sensitivity, rapid response and flexibility, and the ease of use of the sensors and the simplicity of the fabrication processes, the GMP/polymer composites should be a good candidate for liquid sensing.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Interconnected graphene/polymer micro-tube piping composites for liquid sensing

Show Author's information Tingting Yang1,2,§Hongze Zhang3,§Yan Wang4Xiao Li1,2Kunlin Wang1Jinquan Wei1Dehai Wu5Zhihong Li2,3( )Hongwei Zhu1,2( )
School of Materials Science and Engineering, State Key Laboratory of New Ceramics and Fine ProcessingKey Laboratory of Materials Processing Technology of MOE, Tsinghua UniversityBeijing100084China
Center for Nano and Micro MechanicsTsinghua UniversityBeijing100084China
National Key Laboratory of Science and Technology on Micro/Nano FabricationInstitute of Microelectronics, Peking UniversityBeijing100871China
Department of Physics, and Nanoscience and Nanotechnology LaboratoryInstitute for Advanced Study, Nanchang UniversityNanchang330031China
Department of Mechanical EngineeringTsinghua UniversityBeijing100084China

§ These authors contributed equally to this work.

Abstract

Detection and analysis of volatile organic compounds (VOCs) as pollutants in the atmosphere and liquids are of great significance because of the detrimental effects of VOCs. A polymer-coated graphene micro-tube piping (GMP) structure with a cross-linked and interconnected channel network was synthesized for liquid sensing. By virtue of their unique cross-linked and interconnected channel network configuration, polycrystalline conformation, and the support of a polymer layer, the resistivity of the 3D hollow micro-tubing GMPs was sensitive to strain, ensuring high sensitivity of the liquid sensor (R/R0 of ~4 × 103% for pure acetone and R/R0 of ~105% for 0.01 wt.% acetone solution). Due to the capillary force, the interfaces of the 3D structures can speed up the penetration of solvents into the polymer, thus promote distinct selectivity within seconds and significantly decrease the response time. Owing to their good selectivity, high sensitivity, rapid response and flexibility, and the ease of use of the sensors and the simplicity of the fabrication processes, the GMP/polymer composites should be a good candidate for liquid sensing.

Keywords: graphene, liquid sensing, micro-tube piping, flexible devices, high sensitivity

References(29)

1

Dewulf, J.; Langenhove, H. V.; Wittmann, G. Analysis of volatile organic compounds using gas chromatography. TrAC Trends Anal. Chem. 2002, 21, 637–646.

2

Lindinger, C.; Pollien, P.; Ali, S.; Yeretzian, C.; Blank, I.; Märk, T. Unambiguous identification of volatile organic compounds by proton-transfer reaction mass spectrometry coupled with GC/MS. Anal. Chem. 2005, 77, 4117–4124.

3

de Gouw, J.; Warneke, C. Measurements of volatile organic compounds in the earth's atmosphere using proton-transfer-reaction mass spectrometry. Mass Spectrom. Rev. 2007, 26, 223–257.

4

Dan, Y. P.; Lu, Y.; Kybert, N. J.; Luo, Z. T.; Johnson, A. T. C. Intrinsic response of graphene vapor sensors. Nano Lett. 2009, 9, 1472–1475.

5

Mori, M.; Nishimura, H.; Itagaki, Y.; Sadaoka, Y. Potentiometric VOC detection in air using 8YSZ-based oxygen sensor modified with SmFeO3 catalytic layer. Sensor. Actuat. B—Chem. 2009, 142, 141–146.

6

Wolfrum, E. J.; Meglen, R. M.; Peterson, D.; Sluiter, J. Metal oxide sensor arrays for the detection, differentiation, and quantification of volatile organic compounds at sub-parts-per-million concentration levels. Sensor. Actuat. B—Chem. 2006, 115, 322–329.

7

Kreno, L. E.; Hupp, J. T.; Van Duyne, R. P. Metal-organic framework thin film for enhanced localized surface plasmon resonance gas sensing. Anal. Chem. 2010, 82, 8042–8046.

8

Ji, Q. M.; Yoon, S. B.; Hill, J. P.; Vinu, A.; Yu, J. -S.; Ariga, K. Layer-by-layer films of dual-pore carbon capsules with designable selectivity of gas adsorption. J. Am. Chem. Soc. 2009, 131, 4220–4221.

9

Sun, B.; Horvat, J.; Kim, H. S.; Kim, W. -S.; Ahn, J.; Wang, G. X. Synthesis of mesoporous α -Fe2O3 nanostructures for highly sensitive gas sensors and high capacity anode materials in lithium ion batteries. J. Phys. Chem. C 2010, 114, 18753–18761.

10

Ariga, K.; Vinu, A.; Yamauchi, Y.; Ji, Q. M.; Hill, J. P. Nanoarchitectonics for mesoporous materials. Bull. Chem. Soc. Jpn. 2012, 85, 1–32.

11

Ji, Q. M.; Honma, I.; Paek, S. -M.; Akada, M.; Hill, J. P.; Vinu, A.; Ariga, K. Layer-by-layer films of graphene and ionic liquids for highly selective gas sensing. Angew. Chem. Int. Ed. 2010, 50, 9931–9937.

12

Minh, V. A.; Tuan, L. A.; Huy, T. Q.; Hung, V. N.; Quy, N. V. Enhanced NH3 gas sensing properties of a QCM sensor by increasing the length of vertically orientated ZnO nanorods. Appl. Surf. Sci. 2013, 265, 458–464.

13

Kosaki, Y.; Izawa, H.; Ishihara, S.; Kawakami, K.; Sumita, M.; Tateyama, Y.; Ji, Q. M.; Krishnan, V.; Hishita, S.; Yamauchi, Y. et al. Nanoporous carbon sensor with cage-in-fiber structure: Highly selective aniline adsorbent toward cancer risk management. ACS Appl. Mater. Interfaces 2013, 5, 2930–2934.

14

Kida, T.; Harano, H.; Minami, T.; Kishi, S.; Morinaga, N.; Yamazoe, N.; Shimanoe, K. Control of electrode reactions in a mixed-potential-type gas sensor based on a BiCuVOx solid electrolyte. J. Phys. Chem. C 2010, 114, 15141–15148.

15

Rakow, N. A.; Wendland, M. S.; Trend, J. E.; Poirier, R. J.; Paolucci, D. M.; Maki, S. P.; Lyons, C. S.; Swierczek, M. J. Visual indicator for trace organic volatiles. Langmuir 2010, 26, 3767–3770.

16

Yoon, J.; Chae, S. K.; Kim, J. -M. Colorimetric sensors for volatile organic compounds (VOCs) based on conjugated polymer-embedded electrospun fibers. J. Am. Chem. Soc. 2007, 129, 3038–3039.

17

Rakow, N. A.; Suslick, K. S. A colorimetric sensor array for odour visualization. Nature 2000, 406, 710–713.

18

Matveev, B. A.; Gavrilov, G. A.; Evstropov, V. V.; Zotova, N. V.; Karandashov, S. A.; Sotnikova, G. Y.; Stus', N. M.; Talalakin, G. N.; Malinen, J. Mid-infrared (3–5 μm) LEDs as sources for gas and liquid sensors. Sensor. Actuat. B—Chem. 1997, 39, 339–343.

19

Fini, J. M. Microstructure fibres for optical sensing in gases and liquids. Meas. Sci. Technol. 2004, 15, 1120–1128.

20

Kondoh, J.; Muramatsu, T.; Nakanishi, T.; Matsui, Y.; Shiokawa, S. Development of practical surface acoustic wave liquid sensing system and its application for measurement of Japanese tea. Sensor. Actuat. B—Chem. 2003, 92, 191–198.

21

Wei, C.; Dai, L. M.; Roy, A.; Tolle, T. B. Multifunctional chemical vapor sensors of aligned carbon nanotube and polymer composites. J. Am. Chem. Soc. 2006, 128, 1412–1413.

22

Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S. Graphene-based composite materials. Nature 2006, 442, 282–286.

23

Kuilla, T.; Bhadra, S.; Yao, D.; Kim, N. H.; Bose, S.; Lee, J. H. Recent advances in graphene based polymer composites. Prog. Polym. Sci. 2010, 35, 1350–1375.

24

Villmow, T.; Pegel, S.; John, A.; Rentenberger, R.; Pötschke, P. Liquid sensing: Smart polymer/CNT composites. Mater. Today. 2011, 14, 340–345.

25

Pang, H.; Bao, Y.; Xu, L.; Yan, D. -X.; Zhang, W. -Q.; Wang, J. -H.; Li, Z. -M. Double-segregated carbon nanotube–polymer conductive composites as candidates for liquid sensing materials. J. Mater. Chem. A 2013, 1, 4177–4181.

26

Li, X.; Sun, P. Z.; Fan, L. L.; Zhu, M.; Wang, K. L.; Zhong, M. L.; Wei, J. Q.; Wu, D. H.; Cheng, Y.; Zhu, H. W. Multifunctional graphene woven fabrics. Sci. Rep. 2012, 2, 395.

27

Li, X.; Zhang, R.; Yu, W.; Wang, K.; Wei, J.; Wu, D.; Cao, A.; Li, Z.; Cheng, Y.; Zheng, Q., et al. Stretchable and highly sensitive graphene-on-polymer strain sensors. Sci. Rep. 2012, 2, 870.

28

Lee, J. N.; Park, C.; Whitesides, G. M. Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices. Anal. Chem. 2003, 75, 6544–6554.

29

Rentenberger, R.; Cayla, A.; Villmow, T.; Jehnichen, D.; Campagne, C.; Rochery, M.; Devaux, E.; Pötschke, P. Multifilament fibres of poly(ε-caprolactone)/poly(lactic acid) blends with multiwalled carbon nanotubes as sensor materials for ethyl acetate and acetone. Sensor. Actuat. B—Chem. 2011, 160, 22–31.

File
nr-7-6-869_ESM.pdf (870.3 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 09 January 2014
Revised: 07 March 2014
Accepted: 11 March 2014
Published: 09 May 2014
Issue date: June 2014

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014

Acknowledgements

Acknowledgements

This work was supported by National Science Foundation of China (Nos. 51372133 and 91323304), Beijing Science and Technology Program (No. D141100000514001), and Beijing Natural Science Foundation (No. 2122027).

Return