Journal Home > Volume 7 , Issue 6

There have been continuous efforts to seek novel functional two-dimensional semiconductors with high performance for future applications in nanoelectronics and optoelectronics. In this work, we introduce a successful experimental approach to fabricate monolayer phosphorene by mechanical cleavage and a subsequent Ar+ plasma thinning process. The thickness of phosphorene is unambiguously determined by optical contrast spectra combined with atomic force microscopy (AFM). Raman spectroscopy is used to characterize the pristine and plasma-treated samples. The Raman frequency of the A2g mode stiffens, and the intensity ratio of A2g to A1g modes shows a monotonic discrete increase with the decrease of phosphorene thickness down to a monolayer. All those phenomena can be used to identify the thickness of this novel two-dimensional semiconductor. This work on monolayer phosphorene fabrication and thickness determination will facilitate future research on phosphorene.


menu
Abstract
Full text
Outline
About this article

Plasma-assisted fabrication of monolayer phosphorene and its Raman characterization

Show Author's information Wanglin Lu1,§Haiyan Nan2,§Jinhua Hong1Yuming Chen2Chen Zhu1Zheng Liang3Xiangyang Ma1Zhenhua Ni2( )Chuanhong Jin1( )Ze Zhang1
State Key Laboratory of Silicon MaterialsKey Laboratory of Advanced Materials and Applications for Batteries of Zhejiang ProvinceDepartment of Materials Science and Engineering, Zhejiang UniversityHangzhou310027China
Department of PhysicsSoutheast UniversityNanjing211189China
Graphene Research and Characterization CenterTaizhou Sunano New Energy Co., Ltd.Taizhou225300China

§ These authors contributed equally to this work.

Abstract

There have been continuous efforts to seek novel functional two-dimensional semiconductors with high performance for future applications in nanoelectronics and optoelectronics. In this work, we introduce a successful experimental approach to fabricate monolayer phosphorene by mechanical cleavage and a subsequent Ar+ plasma thinning process. The thickness of phosphorene is unambiguously determined by optical contrast spectra combined with atomic force microscopy (AFM). Raman spectroscopy is used to characterize the pristine and plasma-treated samples. The Raman frequency of the A2g mode stiffens, and the intensity ratio of A2g to A1g modes shows a monotonic discrete increase with the decrease of phosphorene thickness down to a monolayer. All those phenomena can be used to identify the thickness of this novel two-dimensional semiconductor. This work on monolayer phosphorene fabrication and thickness determination will facilitate future research on phosphorene.

Keywords: Raman spectroscopy, two-dimensional semiconductor, Mechanical cleavage, monolayer phosphorene, plasma thinning, optical contrast

References(27)

1

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

2

Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.

3

Lin, Y. -M.; Dimitrakopoulos, C.; Jenkins, K. A.; Farmer, D. B.; Chiu, H. -Y.; Grill, A.; Avouris, P. 100-GHz transistors from wafer-scale epitaxial graphene. Science 2010, 327, 662–662.

4

Geim, A. K. Graphene: Status and prospects. Science 2009, 324, 1530–1534.

5

Xu, M. S.; Liang, T.; Shi, M. M.; Chen, H. Z. Graphene-like two-dimensional materials. Chem. Rev. 2013, 113, 3766–3798.

6

Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147–150.

7

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A. A. Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005, 438, 197–200.

8

Mak, K. F.; Lee, C. G.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.

9

Radisavljevic, B.; Whitwick, M. B.; Kis, A. Integrated circuits and logic operations based on single-layer MoS2. ACS Nano 2011, 5, 9934–9938.

10

Wang, H.; Yu, L. L.; Lee, Y. -H.; Shi, Y. M.; Hsu, A.; Chin, M. L.; Li, L. -J.; Dubey, M.; Kong, J.; Palacios, T. Integrated circuits based on bilayer MoS2 transistors. Nano Lett. 2012, 12, 4674–4680.

11

Zhu, W. J.; Low, T.; Lee, Y. -H.; Wang, H.; Farmer, D. B.; Kong, J.; Xia, F. N.; Avouris, P. Electronic transport and device prospects of monolayer molybdenum disulphide grown by chemical vapour deposition. Nat. Commun. 2014, 5, 3087.

12

Morita, A. Semiconducting black phosphorus. Appl. Phys. A 1986, 39, 227–242.

13

Takahashi, T.; Tokailin, H.; Suzuki, S.; Sagawa, T.; Shirotani, I. Electronic band structure of black phosphorus studied by angle-resolved ultraviolet photoelectron spectroscopy. J. Phys. C: Solid State Phys. 1985, 18, 825.

14

Li, L. K.; Yu, Y. J.; Ye, G. J.; Chen, X. H.; Zhang, Y. B. Electronic properties of few-layer black phosphorus. In APS March Meeting Abstracts, Baltimore, Maryland, 2013, pp 6013.

15

Liu, Y. L.; Nan, H. Y.; Wu, X.; Pan, W.; Wang, W. H.; Bai, J.; Zhao, W. W.; Sun, L. T.; Wang, X. R.; Ni, Z. H. Layer-by-layer thinning of MoS2 by plasma. ACS Nano 2013, 7, 4202–4209.

16

Castellanos-Gomez, A.; Barkelid, M.; Goossens, A. M.; Calado, V. E.; van der Zant, H. S. J.; Steele, G. A. Laser-thinning of MoS2: On demand generation of a single-layer semiconductor. Nano Lett. 2012, 12, 3187–3192.

17

Ni, Z. H.; Wang, H. M.; Kasim, J.; Fan, H. M.; Yu, T.; Wu, Y. H.; Feng, Y. P.; Shen, Z. X. Graphene thickness determination using reflection and contrast spectroscopy. Nano Lett. 2007, 7, 2758–2763.

18

Mak, K. F.; Sfeir, M. Y.; Wu, Y.; Lui, C. H.; Misewich, J. A.; Heinz, T. F. Measurement of the optical conductivity of graphene. Phys. Rev. Lett. 2008, 101, 196405.

19

Sugai, S.; Shirotani, I. Raman and infrared reflection spectroscopy in black phosphorus. Solid State Commun. 1985, 53, 753–755.

20

Molina-Sánchez, A.; Wirtz, L. Phonons in single-layer and few-layer MoS2 and WS2. Phys. Rev. B 2011, 84, 155413.

21

Lee, C. G.; Yan, H. G.; Brus, L. E.; Heinz, T. F.; Hone, J.; Ryu, S. Anomalous lattice vibrations of single-and few-layer MoS2. ACS Nano 2010, 4, 2695–2700.

22

Appalakondaiah, S.; Vaitheeswaran, G.; Lebègue, S.; Christensen, N. E.; Svane, A. Effect of van der Waals interactions on the structural and elastic properties of black phosphorus. Phys. Rev. B 2012, 86, 035105.

23

Sugai, S.; Ueda, T.; Murase, K. Pressure dependence of the lattice vibration in the orthorhombic and rhombohedral structures of black phosphorus. J. Phys. Soc. Jpn. 1981, 50, 3356–3361.

24

Qiao, J. S.; Kong, X. H.; Hu, Z. -X.; Yang, F.; Ji, W. Few-layer black phosphorus: Emerging 2D semiconductor with high carrier mobility and linear dichroism. arXiv preprint, 2014, arXiv: 1401.5045.

25

Wang, Y. Y.; Ni, Z. H.; Shen, Z. X.; Wang, H. M.; Wu, Y. H. Interference enhancement of Raman signal of graphene. Appl. Phys. Lett. 2008, 92, 043121.

26

Koh, Y. K.; Bae, M. -H.; Cahill, D. G.; Pop, E. Reliably counting atomic planes of few-layer graphene (n > 4). ACS Nano 2010, 5, 269–274.

27

Takao, Y.; Asahina, H.; Morita, A. Electronic structure of black phosphorus in tight binding approach. J. Phys. Soc. Jpn. 1981, 50, 3362–3369.

Publication history
Copyright
Acknowledgements

Publication history

Received: 20 February 2014
Revised: 06 March 2014
Accepted: 09 March 2014
Published: 08 May 2014
Issue date: June 2014

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014

Acknowledgements

Acknowledgements

The authors would like to thank Prof. Wei Ji from Renmin University for his kindness in sharing with us the unpublished results on the electronic structure calculations of black phosphorus, Prof. Pingheng Tan for his guidance on early Raman characterization, and Dr. Shuo Ding on her assistance with obtaining the optical image used in TOC. This work is financially supported by the National Natural Science Foundation of China (Nos. 51222202, 11104026, and 61376104), the National Basic Research Program of China (No. 2014CB932500) and the Program for Innovative Research Teams in Universities of the Ministry of Education of China (No. IRT13037) and the Fundamental Research Funds for the Central Universities (No. 2014XZZX003-07).

Return