Journal Home > Volume 7 , Issue 6

Au nanoclusters (AuNCs) hold tremendous potential to be employed in a wide variety of biological applications. Despite the rapid development in the field of NCs synthesis, a comprehensive understanding of how cells interact with this class of ultra-small nanoparticles (< 2 nm) having defined sizes and surface chemistry, remains poorly understood. In this study, we show that the choice of the surface ligand used to protect AuNCs can significantly perturb cellular uptake and intracellular redox signaling. A panel of monodisperse, atomically precise AuNCs with different core Au atom number (i.e., Au15, Au18 and Au25) protected with either mercaptopropionic acid (MPA) or glutathione (GSH) capping agent were synthesized and their effects on the generation of intracellular reactive oxygen species (ROS), cytotoxicity and genotoxicity of the NCs were assessed. Both mitochondrial superoxide anion (O2•–) and cytoplasmic ROS were found to be higher in cells exposed to MPA but not GSH capped AuNCs. The unregulated state of intracellular ROS is correlated to the amount of internalized AuNCs. Interestingly, MPA–AuNCs induction of ROS level did not lead to any detrimental cellular effects such as cell death or DNA damage. Instead, it was observed that the increase in redox status corresponded to higher cellular metabolism and proliferative capacity. Our study illustrates that surface chemistry of AuNCs plays a pivotal role in affecting the biological outcomes and the new insights gained will be useful to form the basis of defining specific design rules to enable rational engineering of ultra-small complex nanostructures for biological applications.


menu
Abstract
Full text
Outline
About this article

Presentation matters: Identity of gold nanocluster capping agent governs intracellular uptake and cell metabolism

Show Author's information Chor Yong Tay1Yong Yu1Magdiel Inggrid Setyawati1Jianping Xie1David Tai Leong1,2( )
Department of Chemical and Biomolecular EngineeringNational University of SingaporeSingapore117585Singapore
NUS Graduate School for Integrative Sciences and EngineeringNational University of Singapore, 28 Medical DriveSingapore117456Singapore

Abstract

Au nanoclusters (AuNCs) hold tremendous potential to be employed in a wide variety of biological applications. Despite the rapid development in the field of NCs synthesis, a comprehensive understanding of how cells interact with this class of ultra-small nanoparticles (< 2 nm) having defined sizes and surface chemistry, remains poorly understood. In this study, we show that the choice of the surface ligand used to protect AuNCs can significantly perturb cellular uptake and intracellular redox signaling. A panel of monodisperse, atomically precise AuNCs with different core Au atom number (i.e., Au15, Au18 and Au25) protected with either mercaptopropionic acid (MPA) or glutathione (GSH) capping agent were synthesized and their effects on the generation of intracellular reactive oxygen species (ROS), cytotoxicity and genotoxicity of the NCs were assessed. Both mitochondrial superoxide anion (O2•–) and cytoplasmic ROS were found to be higher in cells exposed to MPA but not GSH capped AuNCs. The unregulated state of intracellular ROS is correlated to the amount of internalized AuNCs. Interestingly, MPA–AuNCs induction of ROS level did not lead to any detrimental cellular effects such as cell death or DNA damage. Instead, it was observed that the increase in redox status corresponded to higher cellular metabolism and proliferative capacity. Our study illustrates that surface chemistry of AuNCs plays a pivotal role in affecting the biological outcomes and the new insights gained will be useful to form the basis of defining specific design rules to enable rational engineering of ultra-small complex nanostructures for biological applications.

Keywords: surface chemistry, gold nanoclusters, nanotechnology, nanobiology, reactive oxygen species

References(43)

1

Yu, Y.; Chen, X.; Yao, Q.; Yu, Y.; Yan, N.; Xie, J. Scalable and precise synthesis of thiolated Au10–12, Au15, Au18, and Au25 nanoclusters via pH controlled CO reduction. Chem. Mater. 2013, 25, 946–952.

2

Shang, L.; Dörlich, R. M.; Trouillet, V.; Bruns, M.; Nienhaus, G. U. Ultrasmall fluorescent silver nanoclusters: Protein adsorption and its effects on cellular responses. Nano Res. 2012, 5, 531–542.

3

Yu, Y.; Luo, Z.; Yu, Y.; Lee, J. Y.; Xie, J. Observation of cluster size growth in CO-directed synthesis of Au25(SR)18 nanoclusters. ACS Nano 2012, 6, 7920–7927.

4

Chen, H. W.; Yeh, J. L.; Wang, L. Y.; Khurshid, H.; Peng, N.; Wang, A. Y.; Mao, H. Preparation and control of the formation of single core and clustered nanoparticles for biomedical applications using a versatile amphiphilic diblock copolymer. Nano Res. 2010, 3, 852–862.

5

Le Guevel, X.; Spies, C.; Daum, N.; Jung, G.; Schneider, M. Highly fluorescent silver nanoclusters stabilized by glutathione: A promising fluorescent label for bioimaging. Nano Res. 2012, 5, 379–387.

6

Zhang, X.-D.; Chen, J.; Luo, Z.; Wu, D.; Shen, X.; Song, S.-S.; Sun, Y.-M.; Liu, P.-X.; Zhao, J.; Huo, S.; et al. Enhanced tumor accumulation of sub-2 nm gold nanoclusters for cancer radiation therapy. Adv. Healthcare Mater. 2014, 3, 133–141.

7

Yu, Y.; Luo, Z.; Chevrier, D. M.; Leong, D. T.; Zhang, P.; Jiang, D.; Xie, J. Identification of a highly luminescent Au22(SG)18 nanocluster. J. Am. Chem. Soc. 2014, 136, 1246–1249.

8

Luo, Z.; Yuan, X.; Yu, Y.; Zhang, Q.; Leong, D. T.; Lee, J. Y.; Xie, J. From aggregation-induced emission of Au(I)-thiolate complexes to ultra-bright Au(0)@Au(I)–thiolate core–shell nanoclusters. J. Am. Chem. Soc. 2012, 134, 16662–16670.

9

Jin, R. Quantum sized, thiolate-protected gold nanoclusters. Nanoscale 2010, 2, 343–362.

10

Yang, J.; Sargent, E. H.; Kelley, S. O.; Ying, J. Y. A general phase-transfer protocol for metal ions and its application in nanocrystal synthesis. Nat. Mater. 2009, 8, 683–689.

11

Verma, A.; Stellacci, F. Effect of surface properties on nanoparticle-cell interactions. Small 2010, 6, 12–21.

12

Albanese, A.; Tang, P. S.; Chan, W. C. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu. Rev. Biomed. Eng. 2012, 14, 1–16.

13

Chanana, M.; Rivera, Gil, P.; Correa-Duarte, M. A.; Liz-Marzán, L. M.; Parak, W. J. Physicochemical properties of protein-coated gold nanoparticles in biological fluids and cells before and after proteolytic digestion. Angew. Chem. Int. Ed. Engl. 2013, 52, 4179–4183.

14

Kreyling, W. G.; Hirn, S.; Möller, W.; Schleh, C.; Wenk, A.; Celik, G.; Lipka, J.; Schäffler, M.; Haberl, N.; Johnston, B. D.; et al. Air–blood barrier translocation of tracheally instilled gold nanoparticles inversely depends on particle size. ACS Nano 2014, 8, 222–233.

15

Yang, L.; Shang, L.; Nienhaus, G. U. Mechanistic aspects of fluorescent gold nanocluster internalization by live HeLa cells. Nanoscale 2013, 5, 1537–1543.

16

Wong, O. A.; Hansen, R. J.; Ni, T. W.; Heinecke, C. L.; Compel, W. S.; Gustafson, D. L.; Ackerson, C. J. Structure–activity relationships for biodistribution, pharmacokinetics, and excretion of atomically precise nanoclusters in a murine model. Nanoscale 2013, 5, 10525–10533.

17

Zhang, X. D.; Wu, D.; Shen, X.; Liu, P. X.; Fan, F. Y.; Fan, S. J. In vivo renal clearance, biodistribution, toxicity of gold nanoclusters. Biomaterials 2012, 33, 4628–4638.

18

Zhang, Y.; Ferguson, S. A.; Watanabe, F.; Jones, Y.; Xu, Y.; Biris, A. S.; Hussain, S.; Ali, S. F. Silver nanoparticles decrease body weight and locomotor activity in adult male rats. Small 2013, 9, 1715–1720.

19

Setyawati, M. I.; Fang, W.; Chia, S. L.; Leong, D. T. Nanotoxicology of common metal oxide based nanomaterials: Their ROS-y and non-ROS-y consequences. Asia Pac. J. Chem. Eng. 2013, 8, 205–217.

20

Cheng, X.; Zhang, W.; Ji, Y.; Meng, J.; Guo, H.; Liu, J.; Wu, X.; Xu, H. Revealing silver cytotoxicity using Au nanorods/Ag shell nanostructures: Disrupting cell membrane and causing apoptosis through oxidative damage. RSC Adv. 2013, 3, 2296–2305.

21

Thannickal, V. J.; Fanburg, B. L. Reactive oxygen species in cell signaling. Am. J. Physiol. 2000, 279, L1005–1028.

22

Setyawati, M. I.; Tay, C. Y.; Leong, D. T. Effect of zinc oxide nanomaterials-induced oxidative stress on the p53 pathway. Biomaterials 2013, 34, 10133–10142.

23

Tay, C. Y.; Cai, P.; Setyawati, M. I.; Fang, W.; Tan, L. P.; Hong, C. H. L.; Chen, X.; Leong, D. T. Nanoparticles strengthen intracellular tension and retard cellular migration. Nano Lett. 2014, 14, 83–88.

24

Setyawati, M. I.; Tay, C. Y.; Chia, S. L.; Goh, S. L.; Fang, W.; Neo, M. J.; Chong, H. C.; Tan, S. M.; Loo, S. C.; Ng, K. W.; et al. Titanium dioxide nanomaterials cause endothelial cell leakiness by disrupting the homophilic interaction of VE–cadherin. Nat. Commun. 2013, 4, 1673.

25

Wang, J.; Dong, B.; Chen, B.; Xu, S.; Zhang, S.; Yu, W.; Xu, C.; Song, H. Glutathione modified gold nanorods with excellent biocompatibility and weak protein adsorption, targeting imaging and therapy toward tumor cells. Dalton Trans. 2013, 42, 11548–11558.

26

Song, M.; Wang, X.; Li, J.; Zhang, R.; Chen, B.; Fu, D. Effect of surface chemistry modification of functional gold nanoparticles on the drug accumulation of cancer cells. J. Biomed. Mater. Res. A 2008, 86A, 942–946.

27

Meng, J.; Ji, Y.; Liu, J.; Cheng, X.; Guo, H.; Zhang, W.; Wu, X.; Xu, H. Using gold nanorods core/silver shell nanostructures as model material to probe biodistribution and toxic effects of silver nanoparticles in mice. Nanotoxicology 2014, 8, 686–696.

28

Yuan, X.; Setyawati, M. I.; Tan, A. S.; Ong, C. N.; Leong, D. T.; Xie, J. P. Highly luminescent silver nanoclusters with tunable emissions: Cyclic reduction–decomposition synthesis and antimicrobial properties. NPG Asia Mater. 2013, 5, e39.

29

Tay, C. Y.; Fang, W.; Setyawati, M. I.; Sum, C. P.; Xie, J.; Ng, K. W.; Chen, X.; Hong, C. H. L.; Leong, D. T. Reciprocal response of human oral epithelial cells to internalized silica nanoparticles. Part. Part. Syst. Charact. 2013, 30, 784–793.

30

Setyawati, M. I.; Tay, C. Y.; Leong, D. T. Exploiting cancer's anti-oxidative weakness through p53 with nanotoxicology. Nanomedicine 2014, 9, 369–371.

31

Noor, R.; Mittal, S.; Iqbal, J. Superoxide dismutase—Applications and relevance to human diseases. Med. Sci. Monit. 2002, 8, RA210–RA215.

32

Pan, Y.; Leifert, A.; Ruau, D.; Neuss, S.; Bornemann, J.; Schmid, G.; Brandau, W.; Simon, U.; Jahnen-Dechent, W. Gold nanoparticles of diameter 1.4 nm trigger necrosis by oxidative stress and mitochondrial damage. Small 2009, 5, 2067–2076.

33

Kotov, N. A. Chemistry. Inorganic nanoparticles as protein mimics. Science 2010, 330, 188–189.

34

Heddle, J. Gold nanoparticle–biological molecule interactions and catalysis. Catalysts 2013, 3, 683–708.

35

del Rio, L. A.; Corpas, F. J.; Sandalio, L. M.; Palma, J. M.; Gómez, M.; Barroso, J. B. Reactive oxygen species, antioxidant systems and nitric oxide in peroxisomes. J. Exp. Bot. 2002, 53, 1255–1272.

36

Pan, Y.; Neuss, S.; Leifert, A.; Fischler, M.; Wen, F.; Simon, U.; Schmid, G.; Brandau, W.; Jahnen-Dechent, W. Size-dependent cytotoxicity of gold nanoparticles. Small 2007, 3, 1941–1949.

37

Coradeghini, R.; Gioria, S.; García, C. P.; Nativo, P.; Franchini, F.; Gilliland, D.; Ponti, J.; Rossi, F. Size-dependent toxicity and cell interaction mechanisms of gold nanoparticles on mouse fibroblasts. Toxicol. Lett. 2013, 217, 205–216.

38

Ng, K. W.; Khoo, S. P.; Heng, B. C.; Setyawati, M. I.; Tan, E. C.; Zhao, X.; Xiong, S.; Fang, W.; Leong, D. T.; Loo, J. S. The role of the tumor suppressor p53 pathway in the cellular DNA damage response to zinc oxide nanoparticles. Biomaterials 2011, 32, 8218–8225.

39

Setyawati, M. I.; Khoo, P. K.; Eng, B. H.; Xiong, S.; Zhao, X.; Das, G. K.; Tan, T. T.; Loo, J. S.; Leong, D. T.; Ng, K. W. Cytotoxic and genotoxic characterization of titanium dioxide, gadolinium oxide, and poly(lactic-co-glycolic acid) nanoparticles in human fibroblasts. J. Biomed. Mater. Res. A 2013, 101, 633−640.

40

Sotiriou, G. A.; Watson, C.; Murdaugh, K. M.; Darrah T. H.; Pyrgiotakis, G.; Elder, A.; Brain, J. D.; Demokritou, P. Engineering safer-by-design, transparent, silica-coated ZnO nanorods with reduced DNA damage potential. Environ. Sci. : Nano 2014, 1, 144–153.

41

Paull, T. T.; Rogakou, E. P.; Yamazaki, V.; Kirchgessner, C. U.; Gellert, M.; Bonner, W. M. A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage. Curr. Biol. 2000, 10, 886-895.

42

Nemoto, S.; Takeda, K.; Yu, Z. X.; Ferrans, V. J.; Finkel, T. Role for mitochondrial oxidants as regulators of cellular metabolism. Mol. Cell. Biol. 2000, 20, 7311–7318.

43

Kim, B. Y.; Han, M. J.; Chung, A. S. Effects of reactive oxygen species on proliferation of Chinese hamster lung fibroblast (V79) cells. Free Radic. Biol. Med. 2001, 30, 686–698.

Publication history
Copyright
Acknowledgements

Publication history

Received: 02 January 2014
Revised: 19 February 2014
Accepted: 02 March 2014
Published: 03 June 2014
Issue date: June 2014

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014

Acknowledgements

Acknowledgements

The authors gratefully acknowledge financial support from the Ministry of Education Academic Research Grants (R-279-000-350-112 to D.T.L, R-279-000-376-112 to C.Y.T, and R-279-000-409-112 to J.P.X) and the Faculty of Engineering Strategic Research Fund (R-397-000-136-112 to D.T.L). C.Y.T acknowledges support from the Lee Kuan Yew Postdoctoral Fellowship.

Return