Journal Home > Volume 7 , Issue 5

Layered bismuth sulfide (Bi2S3) has emerged as an important type of Li-storage material due to its high theoretical capacity and intriguing reaction mechanism. The engineering and fabrication of Bi2S3 materials with large capacity and stable cyclability via a facile approach is essential, but still remains a great challenge. Herein, we employ a one-pot hydrothermal route to fabricate carbon-coated Bi2S3 nanomeshes (Bi2S3/C) as an efficient Li-storage material. The nanomeshes serve as a highly conducting and porous scaffold facilitating electron and ion transport, while the carbon coating layer provides flexible space for efficient reduction of mechanical strain upon electrochemical cycling. Consequently, the fabricated Bi2S3/C exhibits a high and stable capacity delivery in the 0.01-2.5 V region, notably outperforming previously reported Bi2S3 materials. It is able to discharge 472 mA·h·g-1 at 120 mA·g-1 over 50 full cycles, and to retain 301 mA·h·g-1 in the 40th cycle at 600 mA·g-1, demonstrating the potential of Bi2S3 as electrode materials for rechargeable batteries.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

One-pot facile fabrication of carbon-coated Bi2S3 nanomeshes with efficient Li-storage capability

Show Author's information Yang Zhao1Dongliang Gao2Jiangfeng Ni1( )Lijun Gao1Juan Yang2Yan Li2( )
School of Energy & Collaborative Innovation Center of Suzhou Nano Science and TechnologySoochow UniversitySuzhou 215006 China
Key Laboratory for the Physics and Chemistry of Nanodevices Beijing National Laboratory for Molecular Science College of Chemistry and Molecular Engineering, and State Key Laboratory of Rare Earth Materials Chemistry and Applications, Peking UniversityBeijing 100871 China

Abstract

Layered bismuth sulfide (Bi2S3) has emerged as an important type of Li-storage material due to its high theoretical capacity and intriguing reaction mechanism. The engineering and fabrication of Bi2S3 materials with large capacity and stable cyclability via a facile approach is essential, but still remains a great challenge. Herein, we employ a one-pot hydrothermal route to fabricate carbon-coated Bi2S3 nanomeshes (Bi2S3/C) as an efficient Li-storage material. The nanomeshes serve as a highly conducting and porous scaffold facilitating electron and ion transport, while the carbon coating layer provides flexible space for efficient reduction of mechanical strain upon electrochemical cycling. Consequently, the fabricated Bi2S3/C exhibits a high and stable capacity delivery in the 0.01-2.5 V region, notably outperforming previously reported Bi2S3 materials. It is able to discharge 472 mA·h·g-1 at 120 mA·g-1 over 50 full cycles, and to retain 301 mA·h·g-1 in the 40th cycle at 600 mA·g-1, demonstrating the potential of Bi2S3 as electrode materials for rechargeable batteries.

Keywords: lithium storage, bismuth sulfide, carbon coating, nanomesh

References(43)

1

Yu, Y.; Jin, C. H.; Wang, R. H.; Chen, Q.; Peng, L. M. High-quality ultralong Bi2S3 nanowires: Structure, growth, and properties. J. Phys. Chem. B 2005, 109, 18772-18776.

2

Peter, L. M.; Wijayantha, K. G. U.; Riley, D. J.; Waggett, J. P. Band-edge tuning in self-assembled layers of Bi2S3 nanoparticles used to photosensitize nanocrystalline TiO2. J. Phys. Chem. B 2003, 107, 8378-8381.

3

Konstantatos, G.; Levina, L.; Tang, J.; Sargent, E. H. Sensitive solution-processed Bi2S3 nanocrystalline photodetectors. Nano Lett. 2008, 8, 4002-4006.

4

Wu, T.; Zhou, X.; Zhang, H.; Zhong, X. Bi2S3 Nanostructures: A new photocatalyst. Nano Res. 2010, 3, 379-386.

5

Patrick, C. E.; Giustino, F. Structural and electronic properties of semiconductor-sensitized solar-cell interfaces. Adv. Funct. Mater. 2011, 21, 4663-4667.

6

Rath, A. K.; Bernechea, M.; Martinez, L.; Konstantatos, G. Solution-processed heterojunction solar cells based on p-type PbS quantum dots and n-type Bi2S3 nanocrystals. Adv. Mater. 2011, 23, 3712-3717.

7

Zhang, H.; Yang, L.; Liu, Z.; Ge, M.; Zhou, Z.; Chen, W.; Li, Q.; Liu, L. Facet-dependent activity of bismuth sulfide as low-cost counter-electrode materials for dye-sensitized solar cells. J. Mater. Chem. 2012, 22, 18572-18577.

8

Luo, S.; Chai, F.; Zhang, L.; Wang, C.; Li, L.; Liu, X.; Su, Z. Facile and fast synthesis of urchin-shaped Fe3O4@Bi2S core-shell hierarchical structures and their magnetically recyclable photocatalytic activity. J. Mater. Chem. 2012, 22, 4832-4836.

9

Cademartiri, L.; Scotognella, F.; O'Brien, P. G.; Lotsch, B. V.; Thomson, J.; Petrov, S.; Kherani, N. P.; Ozin, G. A. Cross-linking Bi2S3 ultrathin nanowires: A platform for nanostructure formation and biomolecule detection. Nano Lett. 2009, 9, 1482-1486.

10

Wang, D. B.; Shao, M. W.; Yu, D. B.; Li, G. P.; Qian, Y. T. Polyol-mediated preparation of Bi2S3 nanorods. J. Cryst. Growth 2002, 243, 331-335.

11

Liao, H. -C.; Wu, M. -C.; Jao, M. -H.; Chuang, C. -M.; Chen, Y. -F.; Su, W. -F. Synthesis, optical and photovoltaic properties of bismuth sulfide nanorods. CrystEngComm 2012, 14, 3645-3652.

12

Wang, D.; Hao, C.; Zheng, W.; Ma, X.; Chu, D.; Peng, Q.; Li, Y. Bi2S3 nanotubes: Facile synthesis and growth mechanism. Nano Res. 2009, 2, 130-134.

13

Tahir, A. A.; Ehsan, M. A.; Mazhar, M.; Wijayantha, K. G. U.; Zeller, M.; Hunter, A. D. Photoelectrochemical and photoresponsive properties of Bi2S3 nanotube and nanoparticle thin films. Chem. Mater. 2010, 22, 5084-5092.

14

Cademartiri, L.; Malakooti, R.; O'Brien, P. G.; Migliori, A.; Petrov, S.; Kherani, N. P.; Ozin, G. A. Large-scale synthesis of ultrathin Bi2S3 necklace nanowires. Angew. Chem. Int. Ed. 2008, 47, 3814-3817.

15

Cademartiri, L.; Guerin, G.; Bishop, K. J. M.; Winnik, M. A.; Ozin, G. A. Polymer-like conformation and growth kinetics of Bi2S3 nanowires. J. Am. Chem. Soc. 2012, 134, 9327-9334.

16

Liu, Z. P.; Peng, S.; Xie, Q.; Hu, Z. K.; Yang, Y.; Zhang, S. Y.; Qian, Y. T. Large-scale synthesis of ultralong Bi2S3 nanoribbons via a solvothermal process. Adv. Mater. 2003, 15, 936-940.

17

Shao, M. W.; Zhang, W.; Wu, Z. C.; Ni, Y. B. A template-free route to Bi2S3 nanoribbons. J. Cryst. Growth 2004, 265, 318-321.

18

Song, C.; Wang, D.; Yang, T.; Hu, Z. Morphology-controlled synthesis of Bi2S3 microstructures. CrystEngComm 2011, 13, 3087-3092.

19

Zhang, B.; Ye, X. C.; Hou, W. Y.; Zhao, Y.; Xie, Y. Biomolecule-assisted synthesis and electrochemical hydrogen storage of Bi2S3 flowerlike patterns with well-aligned nanorods. J. Phys. Chem. B 2006, 110, 8978-8985.

20

Li, L.; Sun, N.; Huang, Y.; Qin, Y.; Zhao, N.; Gao, J.; Li, M.; Zhou, H.; Qi, L. Topotactic transformation of single-crystalline precursor discs into disc-like Bi2S3 nanorod networks. Adv. Funct. Mater. 2008, 18, 1194-1201.

21

Sigman, M. B.; Korgel, B. A. Solventless synthesis of Bi2S3 (bismuthinite) nanorods, nanowires, and nanofabric. Chem. Mater. 2005, 17, 1655-1660.

22

Hu, P. F.; Cao, Y. L.; Lu, B. Flowerlike assemblies of Bi2S3 nanorods by solvothermal route and their electrochemical hydrogen storage performance. Mater. Lett. 2013, 106, 297-300.

23

Jin, R. C.; Xu, Y. B.; Li, G. H.; Liu, J. S.; Chen, G. Hierarchical chlorophytum-like Bi2S3 architectures with high electrochemical performance. Int. J. Hydrogen Energy 2013, 38, 9137-9144.

24

Zhou, H.; Xiong, S.; Wei, L.; Xi, B.; Zhu, Y.; Qian, Y. Acetylacetone-directed controllable synthesis of Bi2S3 nanostructures with tunable morphology. Cryst. Growth Des. 2009, 9, 3862-3867.

25

Ma, J.; Liu, Z.; Lian, J.; Duan, X.; Kim, T.; Peng, P.; Liu, X.; Chen, Q.; Yao, G.; Zheng, W. Ionic liquids-assisted synthesis and electrochemical properties of Bi2S3 nanostructures. CrystEngComm 2011, 13, 3072-3079.

26

Zhang, Z.; Zhou, C. K.; Lu, H.; Jia, M.; Lai, Y. Q.; Li, J. Facile synthesis of dandelion-like Bi2S3 microspheres and their electrochemical properties for lithium-ion batteries. Mater. Lett. 2013, 91, 100-102.

27

Jung, H.; Park, C. -M.; Sohn, H. -J. Bismuth sulfide and its carbon nanocomposite for rechargeable lithium-ion batteries. Electrochim. Acta 2011, 56, 2135-2139.

28

Lu, C.; Qi, L.; Yang, J.; Zhang, D.; Wu, N.; Ma, J. Simple template-free solution route for the controlled synthesis of Cu(OH)2. J. Phys. Chem. B 2004, 108, 17825-17831.

29

Ni, J. F.; Morishita, M.; Kawabe, Y.; Watada, M.; Takeichi, N.; Sakai, T. Hydrothermal preparation of LiFePO4 nanocrystals mediated by organic acid. J. Power Sources 2010, 195, 2877-2882.

30

Li, C. Q.; Sun, N. J.; Ni, J. F.; Wang, J. Y.; Chu, H. B.; Zhou, H. H.; Li, M. X.; Li, Y. Controllable preparation and properties of composite materials based on ceria nanoparticles and carbon nanotubes. J. Solid State Chem. 2008, 181, 2620-2625.

31

Liu, J.; Ni, J.; Zhao, Y.; Wang, H.; Gao, L. Grapecluster-like Fe3O4@C/CNT nanostructures with stable Li-storage capability. J. Mater. Chem. A 2013, 1, 12879-12884.

32

Koh, Y. W.; Lai, C. S.; Du, A. Y.; Tiekink, E. R. T.; Loh, K. P. Growth of bismuth sulfide nanowire using bismuth trisxanthate single source precursors. Chem. Mater. 2003, 15, 4544-4554.

33

Belharouak, I.; Johnson, C.; Amine, K. Synthesis and electrochemical analysis of vapor-deposited carbon-coated LiFePO4. Electrochem. Commun. 2005, 7, 983-988.

34

Ni, J.; Wang, G.; Yang, J.; Gao, D.; Chen, J.; Gao, L.; Li, Y. Carbon nanotube-wired and oxygen-deficient MoO3 nanobelts with enhanced lithium-storage capability. J. Power Sources 2014, 247, 90-94.

35

Ma, J.; Yang, J.; Jiao, L.; Wang, T.; Lian, J.; Duan, X.; Zheng, W. Bi2S3 nanomaterials: Morphology manipulation and related properties. Dalton Trans. 2011, 40, 10100-10108.

36

Wang, G. B.; Ni, J. F.; Wang, H. B.; Gao, L. J. High-performance CNT-wired MoO3 nanobelts for Li-storage application. J. Mater. Chem. A 2013, 1, 4112-4118.

37

Wang, Y. G.; Li, H. Q.; He, P.; Hosono, E.; Zhou, H. S. Nano active materials for lithium-ion batteries. Nanoscale 2010, 2, 1294-1305.

38

Cheng, Y. W.; Lu, S. T.; Zhang, H. B.; Varanasi, C. V.; Liu, J. Synergistic effects from graphene and carbon nanotubes enable flexible and robust electrodes for high-performance supercapacitors. Nano Lett. 2012, 12, 4206-4211.

39

Zhao, L. W.; Ni, J. F.; Wang, H. B.; Gao, L. J. Na0.44MnO2-CNT electrodes for non-aqueous sodium batteries. RSC Adv. 2013, 3, 6650-6655.

40

Chu, H. B.; Wei, L.; Cui, R. L.; Wang, J. Y.; Li, Y. Carbon nanotubes combined with inorganic nanomaterials: Preparations and applications. Coord. Chem. Rev. 2010, 254, 1117-1134.

41

Ni, J. F.; Han, Y. H.; Gao, L. J.; Lu, L. One-pot synthesis of CNT-wired LiCo0.5Mn0.5PO4 nanocomposites. Electrochem. Commun. 2013, 31, 84-87.

42

Ni, J. F.; Wang, H. B.; Gao, L. J.; Lu, L. A high-performance LiCoPO4/C core/shell composite for Li-ion batteries. Electrochim. Acta 2012, 70, 349-354.

43

Ni, J. F.; Gao, L. J.; Lu, L. Carbon coated lithium cobalt phosphate for Li-ion batteries: Comparison of three coating techniques. J. Power Sources 2013, 221, 35-41.

File
nr-7-5-765_ESM.pdf (1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 04 February 2014
Revised: 24 February 2014
Accepted: 02 March 2014
Published: 26 April 2014
Issue date: May 2014

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014

Acknowledgements

Support of this work by the Ministry of Science and Technology of the people's Republic of China (MOST) (No. 2011AA11A235) and the National Natural Science of China (NSFC) (No. 51302181, 11179011) is acknowledged. J. Ni is grateful to SRF for ROCS, SEM.

Return