Journal Home > Volume 7 , Issue 5

DNA and silica-coated magnetic particles entangle and form visible aggregates under chaotropic conditions with a rotating magnetic field, in a manner that enables quantification of DNA by image analysis. As a means of exploring the mechanism of this DNA quantitation assay, nanoscale SiO2-coated Fe3O4 (Fe3O4@SiO2) particles are synthesized via a solvothermal method. Characterization of the particles defines them to be ~200 nm in diameter with a large surface area (141.89 m2/g), possessing superparamagnetic properties and exhibiting high saturation magnetization (38 emu/g). The synthesized Fe3O4@SiO2 nanoparticles are exploited in the DNA quantification assay and, as predicted, the nanoparticles provide better sensitivity than commercial microscale Dynabeads® for quantifying DNA, with a detection limit of 4 kilobase-pair fragments of human DNA. Their utility is proven using nanoparticle DNA quantification to guide efficient polymerase chain reaction (PCR) amplification of short tandem repeat loci for human identification.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Rapid, cost-effective DNA quantification via a visually-detectable aggregation of superparamagnetic silica-magnetite nanoparticles

Show Author's information Qian Liu1,4Jingyi Li1,4Hongxue Liu5Ibrahim Tora1Matthew S. Ide6Jiwei Lu5Robert J. Davis6David L. Green6James P. Landers1,2,3,4( )
Department of Chemistry, University of Virginia McCormick Road, P. O. Box 400319, CharlottesvilleVirginia22904 USA
Department of Pathology University of Virginia Health Science CenterCharlottesvilleVirginia 22908 USA
Department of Mechanical Engineering, University of Virginia CharlottesvilleVirginia22904 USA
Center for Microsystems for the Life Sciences, University of Virginia CharlottesvilleVirginia22904 USA
Department of Materials Science & Engineering, University of VirginiaP. O. Box 400745, 395 McCormick RoadCharlottesvilleVirginia22904-4745 USA
Department of Chemical Engineering, University of Virginia123 Engineers' WayCharlottesvilleVirginia22904 USA

Abstract

DNA and silica-coated magnetic particles entangle and form visible aggregates under chaotropic conditions with a rotating magnetic field, in a manner that enables quantification of DNA by image analysis. As a means of exploring the mechanism of this DNA quantitation assay, nanoscale SiO2-coated Fe3O4 (Fe3O4@SiO2) particles are synthesized via a solvothermal method. Characterization of the particles defines them to be ~200 nm in diameter with a large surface area (141.89 m2/g), possessing superparamagnetic properties and exhibiting high saturation magnetization (38 emu/g). The synthesized Fe3O4@SiO2 nanoparticles are exploited in the DNA quantification assay and, as predicted, the nanoparticles provide better sensitivity than commercial microscale Dynabeads® for quantifying DNA, with a detection limit of 4 kilobase-pair fragments of human DNA. Their utility is proven using nanoparticle DNA quantification to guide efficient polymerase chain reaction (PCR) amplification of short tandem repeat loci for human identification.

Keywords: core-shell, superparamagnetic, silica/magnetite, DNA quantification, polymerase chain reaction (PCR)

References(39)

1

Penn, S. G.; He, L.; Natan, M. J. Nanoparticles for bioanalysis. Curr. Opin. Chem. Biol. 2003, 7, 609-615.

2

Pankhurst, Q. A.; Connolly, J.; Jones, S. K.; Dobson, J. Applications of magnetic nanoparticles in biomedicine. J. Phys. D: Appl. Phys. 2003, 36, R167-R181.

3

Willner, I.; Katz, E. Magnetic control of electrocatalytic and bioelectrocatalytic processes. Angew. Chem. Int. Ed. 2003, 42, 4576-4588.

4

Xu, C. J.; Xu, K. M.; Gu, H. W.; Zhong, X. F.; Guo, Z. H.; Zheng, R. K.; Zhang, X. X.; Xu, B. Nitrilotriacetic acid-modified magnetic nanoparticles as a general agent to bind histidine-tagged proteins. J. Am. Chem. Soc. 2004, 126, 3392-3393.

5

Perez, J. M.; O'Loughin, T.; Simeone, F. J.; Weissleder, R.; Josephson, L. DNA-based magnetic nanoparticle assembly acts as a magnetic relaxation nanoswitch allowing screening of DNA-cleaving agents. J. Am. Chem. Soc. 2002, 124, 2856-2857.

6

Laurent, S.; Forge, D.; Port, M.; Roch, A.; Robic, C.; Vander Elst, L.; Muller, R. N. Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev. 2008, 108, 2064-2110.

7

Frey, N. A.; Peng, S.; Cheng, K.; Sun, S. H. Magnetic nanoparticles: Synthesis, functionalization, and applications in bioimaging and magnetic energy storage. Chem. Soc. Rev. 2009, 38, 2532-2542.

8

Huang, S. -H.; Juang, R. -S. Biochemical and biomedical applications of multifunctional magnetic nanoparticles: A review. J. Nanopart. Res. 2011, 13, 4411-4430.

9

Gupta, A. K.; Gupta, M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 2005, 26, 3995-4021.

10

Suh, S. K.; Yuet, K.; Hwang, D. K.; Bong, K. W.; Doyle, P. S.; Hatton, T. A. Synthesis of nonspherical superparamagnetic particles: In situ coprecipitation of magnetic nanoparticles in microgels prepared by stop-flow lithography. J. Am. Chem. Soc. 2012, 134, 7337-7343.

11
Drmota, A.; Drofenik, M.; Koselj, J.; Žnidaršič, A. Microemulsion method for synthesis of magnetic oxide nanoparticles. In Microemulsions—An Introduction to Properties and Applications. Najjar, R., Ed.; InTech: Croatia, 2012; pp 191-214.https://doi.org/10.5772/36154
DOI
12

Okoli, C.; Sanchez-Dominguez, M.; Boutonnet, M.; Järås, S.; Civera, C.; Solans, C.; Kuttuva, G. R. Comparison and functionalization study of microemulsion-prepared magnetic iron oxide nanoparticles. Langmuir 2012, 28, 8479-8485.

13

Lee, J.; Lee, Y.; Youn, J. K.; Na, H. B.; Yu, T.; Kim, H.; Lee, S. -M.; Koo, Y. -M.; Kwak, J. H.; Park, H. G., et al. Simple synthesis of functionalized superparamagnetic magnetite/silic core/shell nanoparticles and their application as magnetically separable high-performance biocatalysts. Small 2008, 4, 143-152.

14

Deng, H.; Li, X. L.; Peng, Q.; Wang, X.; Chen, J. P.; Li, Y. D. Monodisperse magnetic single-crystal ferrite microspheres. Angew. Chem. Int. Ed. 2005, 44, 2782-2785.

15

Cheng, C. M.; Wen, Y. H.; Xu, X. F.; Gu, H. C. Tunable synthesis of carboxyl-functionalized magnetite nanocrystal clusters with uniform size. J. Mater. Chem. 2009, 19, 8782-8788.

16

Ge, J. P.; Hu, Y. X.; Biasini, M.; Beyermann, W. P.; Yin, Y. D. Superparamagnetic magnetite colloidal nanocrystal clusters with uniform size. Angew. Chem. Int. Ed. 2007, 46, 4342-4345.

17

Si, S. F.; Li, C. H.; Wang, X.; Yu, D. P.; Peng, Q.; Li, Y. D. Magnetic monodisperse Fe3O4 nanoparticles. Cryst. Growth Des. 2005, 5, 391-393.

18

Wang, X.; Zhuang, J.; Peng, Q.; Li, Y. D. A general strategy for nanocrystal synthesis. Nature 2005, 437, 121-124.

19

Jia, X.; Chen, D. R.; Jiao, X. L.; Zhai, S. M. Environmentally-friendly preparation of water-dispersible magnetite nanoparticles. Chem. Commun. 2009, 968-970.

20

Wang, J.; Yao, M.; Xu, G. J.; Cui, P.; Zhao, J. T. Synthesis of monodisperse nanocrystals of high crystallinity magnetite through solvothermal process. Mater. Chem. Phys. 2009, 113, 6-9.

21
Beaven, G. H.; Holiday, E. R.; Johnson, E. A. Optical properties of nucleic acids and their components. In The Nucleic Acids. Volume 1. Chargaff, E., Davidson, J. N., Eds.; New York: Academic Press, 1955; pp 493-553.
22

Ahn S. J.; Costa, J.; Emanuel J. R. PicoGreen quantitation of DNA: Effective evaluation of samples pre- or post-PCR. Nucl. Acids Res. , 1996, 24, 2623-2625.

23

Sanchez J. L.; Storch, G. A. Multiplex, quantitative, real-time PCR assay for cytomegalovirus and human DNA. J. Clin. Microbiol. 2002, 40, 2381-2386.

24

Leslie, D. C.; Li, J. Y.; Strachan, B. C.; Begley, M. R.; Finkler, D.; Bazydlo, L. A.; Barker, N. S.; Haverstick, D. M.; Utz, M.; Landers, J. P. New detection modality for label-free quantification of DNA in biological samples via superparamagnetic bead aggregation. J. Am. Chem. Soc. 2012, 134, 5689-5696.

25

Li, J. Y.; Liu, Q.; Alsamarri, H.; Lounsbury, J. A.; Haversitick, D. M.; Landers, J. P. Label-free DNA quantification via a 'pipette, aggregate and blot' (PAB) approach with magnetic silica particles on filter paper. Lab Chip 2013, 13, 955-961.

26

Melzak, K. A.; Sherwood, C. S.; Turner, R. F. B.; Haynes, C. A. Driving forces for DNA adsorption to silica perchlorate solutions. J. Colloid. Interface Sci. 1996, 181, 635-644.

27

Luger, K.; Mäder, A. W.; Richmond, R. K.; Sargent, D. F.; Richmond, T. J. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 1997, 389, 251-260.

28

Rivetti, C.; Codeluppi, S. Accurate length determination of DNA molecules visualized by atomic force microscopy: Evidence for a partial B- to A-form transition on mica. Ultramicroscopy 2001, 87, 55-66.

29

Brunauer, S.; Emmett, P. H.; Teller, E. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 1938, 60, 309-319.

30

Dodson, M. H.; McClelland-Brown, E. Magnetic blocking temperatures of single-domain grains during slow cooling. J. Geophys. Res. : Solid Earth 1980, 85, 2625-2637.

31

Andersen, J. Quantification of DNA by slot-blot analysis. MethodsMol. Biol. 1998, 98, 33-38.

32

Breadmore, M. C.; Wolfe, K. A.; Arcibal, I. G.; Leung, W. K.; Dickson, D.; Giordano, B. C.; Power, M. E.; Ferrance, J. P.; Feldman, S. H.; Norris, P. M., et al. Microchip-based purification of DNA from biological samples. Anal. Chem. 2003, 75, 1880-1886.

33

Lounsbury, J. A.; Coult, N.; Miranian, D. C.; Cronk, S. M.; Haverstick, D. M.; Kinnon, P.; Saul, D. J.; Landers, J. P. An enzyme-based DNA preparation method for application to forensic biological samples and degraded. Forensic Sci. Int. : Genet. 2012, 6, 607-615.

34

Golenberg, E. M.; Bickel, A.; Weihs, P. Effect of highly fragmented DNA on PCR. Nucl. Acids Res. 1996, 24, 5026-5033.

35

Ginoza, W.; Zimm, B. H. Mechanisms of inactivation of deoxyribonucleic acids by heat. Proc. Natl. Acad. Sci. 1961, 47, 639-652.

36

Lindahl, T.; Nyberg, B. Heat-induced deamination of cytosine residues in deoxyribonucleic acid. Biochemistry 1974, 13, 3405-3410.

37

Liu, J.; Sun, Z. K.; Deng, Y. H.; Zou, Y.; Li, C. Y.; Guo, X. H.; Xiong, L. Q.; Gao, Y.; Li, Fu. Y.; Zhao, D. Y. Highly water-dispersible biocompatible magnetite particles with low cytotoxicity stabilized by citrate groups. Angew. Chem. Int. Ed. 2009, 48, 5875-5879.

38

Deng, Y. H.; Qi, D. W.; Deng, C. H.; Zhang, X. M.; Zhao, D. Y. Superparamagnetic high-magnetization microspheres with an Fe3O4@SiO2 core and perpendicularly aligned mesoporous SiO2 shell for removal of microcystins. J. Am. Chem. Soc. 2008, 130, 28-29.

39

Masters, J. R.; Thomson, J. A.; Daly-Burns, B.; Reid, Y. A.; Dirks, W. G.; Packer, P.; Toji, L. H.; Ohno, T.; Tanabe, H.; Arlett, C. F. et al. Short tandem repeat profiling provides an international reference standard for human cell lines. Proc. Natl. Acad. Sci. 2001, 98, 8012-8017.

File
nr-7-5-755_ESM.pdf (1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 11 October 2013
Revised: 17 January 2014
Accepted: 27 February 2014
Published: 24 April 2014
Issue date: May 2014

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014

Acknowledgements

Acknowledgements

We would like to acknowledge Dr. Michal Sabat and Richard R. White from University of Virginia Nanoscale Materials Characterization Facility for their help in making this research possible.

Return