Journal Home > Volume 7 , Issue 5

Chemical vapor deposited (CVD) graphene is nanopatterned using a spherical block copolymer etch mask. The use of spherical rather than cylindrical block copolymers allows homogeneous patterning of cm-scale areas without any substrate surface treatment. Raman spectroscopy was used to study the controlled generation of point defects in the graphene lattice with increasing etching time, confirming that alongside the nanomesh patterning, the nanopatterned CVD graphene presents a high defect density between the mesh holes. The nanopatterned samples showed sensitivities for NO2 of more than one order of magnitude higher than for non-patterned graphene. NO2 concentrations as low as 300 ppt were detected with an ultimate detection limit of tens of ppt. This is the smallest value reported so far for non-UV illuminated graphene chemiresistive NO2 gas sensors. The dramatic improvement in the gas sensitivity is believed to be due to the high adsorption site density, thanks to the combination of edge sites and point defect sites. This work opens the possibility of large area fabrication of nanopatterned graphene with extremely high densities of adsorption sites for sensing applications.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Large-area nanopatterned graphene for ultrasensitive gas sensing

Show Author's information Alberto Cagliani( )David Micheal Angus MackenzieLisa Katharina TschammerFilippo PizzoccheroKristoffer AlmdalPeter Bøggild( )
DTU Nanotech-Center for Nanostructured Graphene (CNG) and Department of Micro- and Nanotechnology Technical University of Denmark, Building 345 Ørsteds Plads, 2800 Kgs.Lyngby Denmark

Abstract

Chemical vapor deposited (CVD) graphene is nanopatterned using a spherical block copolymer etch mask. The use of spherical rather than cylindrical block copolymers allows homogeneous patterning of cm-scale areas without any substrate surface treatment. Raman spectroscopy was used to study the controlled generation of point defects in the graphene lattice with increasing etching time, confirming that alongside the nanomesh patterning, the nanopatterned CVD graphene presents a high defect density between the mesh holes. The nanopatterned samples showed sensitivities for NO2 of more than one order of magnitude higher than for non-patterned graphene. NO2 concentrations as low as 300 ppt were detected with an ultimate detection limit of tens of ppt. This is the smallest value reported so far for non-UV illuminated graphene chemiresistive NO2 gas sensors. The dramatic improvement in the gas sensitivity is believed to be due to the high adsorption site density, thanks to the combination of edge sites and point defect sites. This work opens the possibility of large area fabrication of nanopatterned graphene with extremely high densities of adsorption sites for sensing applications.

Keywords: graphene, defects, gas sensor, nanopatterning, nitrogen dioxide

References(34)

1

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666-669.

2

Schedin, F.; Geim, A. K.; Morozov, S. V.; Hill, E. W.; Blake, P.; Katsnelson, M. I.; Novoselov, K. S. Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 2007, 6, 652-655.

3

Hwang, S.; Lim, J.; Park, H. G.; Kim, W. K.; Kim, D. -H.; Song, I. S.; Kim, J. H.; Lee, S.; Woo, D. H.; Jun, S. C. Chemical vapor sensing properties of graphene based on geometrical evaluation. Curr. Appl. Phys. 2012, 12, 1017-1022.

4

Yuan, W.; Shi, G. Graphene-based gas sensors. J. Mater. Chem. A 2013, 1, 10078-10091.

5

Li, X.; Cai, W.; An, J.; Kim, S.; Nah, J.; Yang, D.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312-1314.

6

Bae, S.; Kim, H.; Lee, Y.; Xu, X.; Park, J. -S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Kim, H. R.; Song, Y. I.; et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 2010, 5, 574-578.

7

Crowther, A. C.; Ghassaei, A.; Jung, N.; Brus, L. E. Strong charge-transfer doping of 1 to 10 layer graphene by NO2. ACS Nano 2012, 6, 1865-1875.

8

Yavari, F.; Castillo, E.; Gullapalli, H.; Ajayan, P. M.; Koratkar, N. High sensitivity detection of NO2 and NH3 in air using chemical vapor deposition grown graphene. Appl. Phys. Lett. 2012, 100, 203120.

9

Nomani, M. W. K.; Shishir, R.; Qazi, M.; Diwan, D.; Shields, V. B.; Spencer, M. G.; Tompa, G. S.; Sbrockey, N. M.; Koley, G. Highly sensitive and selective detection of NO2 using epitaxial graphene on 6H-SiC. Sensor. Actuat. B Chem. 2010, 150, 301-307.

10

Kim, C.; Yoo, S.; Nam, D. Effect of temperature and humidity on NO2 and NH3 gas sensitivity of bottom-gate graphene FETs prepared by ICP-CVD. IEEE Electron Device Lett. 2012, 33, 1084-1086.

11

An, X.; Yu, J. C.; Wang, Y.; Hu, Y.; Yu, X.; Zhang, G. WO3 nanorods/graphene nanocomposites for high-efficiency visible-light-driven photocatalysis and NO2 gas sensing. J. Mater. Chem. 2012, 22, 8525-8531.

12

Lu, G.; Park, S.; Yu, K.; Ruoff, R. S.; Ocola, L. E.; Rosenmann, D.; Chen, J. Toward practical gas sensing with highly reduced graphene oxide: a new signal processing method to circumvent run-to-run and device-to-device variations. ACS Nano 2011, 5, 1154-1164.

13

Hesterberg, T. W.; Bunn, W. B.; McClellan, R. O.; Hamade, A. K.; Long, C. M.; Valberg, P. A Critical review of the human data on short-term nitrogen dioxide (NO2) exposures: Evidence for NO2 no-effect levels. Crit. Rev. Toxicol. 2009, 39, 743-781.

14

Zhang, Y. -H.; Zhou, K. -G.; Xie, K. -F.; Gou, X. -C.; Zeng, J.; Zhang, H. -L.; Peng, Y. Effects of Stone-Wales defect on the interactions between NH3, NO2 and graphene. J. Nanosci. Nanotechnol. 2010, 10, 7347-7350.

15

Zhang, Y. -H.; Chen, Y. -B.; Zhou, K. -G.; Liu, C. -H.; Zeng, J.; Zhang, H. -L.; Peng, Y. Improving gas sensing properties of graphene by introducing dopants and defects: A first-principles study. Nanotechnology 2009, 20, 185504.

16

Hajati, Y.; Blom, T.; Jafri, S. H. M.; Haldar, S.; Bhandary, S.; Shoushtari, M. Z.; Eriksson, O.; Sanyal, B.; Leifer, K. Improved gas sensing activity in structurally defected bilayer graphene. Nanotechnology 2012, 23, 505501.

17

Chung, M. G.; Kim, D. H.; Lee, H. M.; Kim, T.; Choi, J. H.; Seo, D. K.; Yoo, J. -B.; Hong, S. -H.; Kang, T. J.; Kim, Y. H. Highly sensitive NO2 gas sensor based on ozone treated graphene. Sensor. Actuat. B Chem. 2012, 166-167, 172-176.

18

Paul, R. K.; Badhulika, S.; Saucedo, N. M.; Mulchandani, A. Graphene nanomesh as highly sensitive chemiresistor gas sensor. Anal. Chem. 2012, 84, 8171-8178.

19

Bai, J.; Zhong, X.; Jiang, S.; Huang, Y.; Duan, X. Graphene nanomesh. Nat. Nanotechnol. 2010, 5, 190-194.

20

Kim, M.; Safron, N. S.; Han, E.; Arnold, M. S.; Gopalan, P. Fabrication and characterization of large-area, semiconducting nanoperforated graphene materials. Nano Lett. 2010, 10, 1125-1131.

21

Pedersen, T.; Flindt, C.; Pedersen, J.; Mortensen, N.; Jauho, A. -P.; Pedersen, K. Graphene antidot lattices: Designed defects and spin qubits. Phys. Rev. Lett. 2008, 100, 136804.

22

Liang, X.; Jung, Y. -S.; Wu, S.; Ismach, A.; Olynick, D. L.; Cabrini, S.; Bokor, J. Formation of bandgap and subbands in graphene nanomeshes with sub-10 nm ribbon width fabricated via nanoimprint lithography. Nano Lett. 2010, 10, 2454-2460.

23

Kim, M.; Safron, N. S.; Han, E.; Arnold, M. S.; Gopalan, P. Electronic transport and Raman scattering in size-controlled nanoperforated graphene. ACS Nano 2012, 6, 9846-9854.

24

Han, E.; Stuen, K. O.; La, Y.; Nealey, P. F.; Gopalan, P. Effect of composition of substrate-modifying random copolymers on the orientation of symmetric and asymmetric diblock copolymer domains. Macromolecules 2008, 41, 9090-9097.

25

Chen, G.; Paronyan, T. M.; Harutyunyan, A. R. Sub-ppt gas detection with pristine graphene. Appl. Phys. Lett. 2012, 101, 053119.

26

Chen, G.; Paronyan, T. M.; Pigos, E. M.; Harutyunyan, A. R. Enhanced gas sensing in pristine carbon nanotubes under continuous ultraviolet light illumination. Sci. Rep. 2012, 2, 343.

27

Novikov, S.; Satrapinski, A.; Lebedeva, N.; Iisakka, I. Sensitivity optimization of epitaxial graphene-based gas sensors. IEEE T. Instrum. Meas. 2013, 62, 1859-1864.

28

Zeng, Z.; Huang, X.; Yin, Z.; Li, H.; Chen, Y.; Li, H.; Zhang, Q.; Ma, J.; Boey, F.; Zhang, H. Fabrication of graphene nanomesh by using an anodic aluminum oxide membrane as a template. Adv. Mater. 2012, 24, 4138-4142.

29

Schneider, G. F.; Calado, V. E.; Zandbergen, H.; Vandersypen, L. M. K.; Dekker, C. Wedging transfer of nanostructures. Nano Lett. 2010, 10, 1912-1916.

30

Pirkle, A.; Chan, J.; Venugopal, A.; Hinojos, D.; Magnuson, C. W.; McDonnell, S.; Colombo, L.; Vogel, E. M.; Ruoff, R. S.; Wallace, R. M. The effect of chemical residues on the physical and electrical properties of chemical vapor deposited graphene transferred to SiO2. Appl. Phys. Lett. 2011, 99, 122108.

31

Dua, V.; Surwade, S. P.; Ammu, S.; Agnihotra, S. R.; Jain, S.; Roberts, K. E.; Park, S.; Ruoff, R. S.; Manohar, S. K. All-organic vapor sensor using inkjet-printed reduced graphene oxide. Angew. Chem. Int. Ed. Engl. 2010, 49, 2154-2157.

32

Cançado, L. G.; Jorio, A.; Ferreira, E. H. M.; Stavale, F.; Achete, C. A; Capaz, R. B.; Moutinho, M. V. O.; Lombardo, A.; Kulmala, T. S.; Ferrari, A. C. Quantifying defects in graphene via Raman spectroscopy at different excitation energies. Nano Lett. 2011, 11, 3190-3196.

33

Eckmann, A.; Felten, A.; Mishchenko, A.; Britnell, L.; Krupke, R.; Novoselov, K. S.; Casiraghi, C. Probing the nature of defects in graphene by Raman spectroscopy. Nano Lett. 2012, 12, 3925-3930.

34

Eckmann, A.; Felten, A.; Verzhbitskiy, I.; Davey, R.; Casiraghi, C. Raman study on defective graphene: Effect of the excitation energy, type, and amount of defects. Phys. Rev. B 2013, 88, 035426.

File
nr-7-5-743_ESM.pdf (1.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 04 December 2013
Revised: 20 February 2014
Accepted: 27 February 2014
Published: 26 April 2014
Issue date: May 2014

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014

Acknowledgements

Acknowledgements

The authors wish to thank the Center for Nanostructured Graphene and the European Project NMP-FP7 Grafol for financial support. The Center for Nanostructured Graphene (CNG) is sponsored by the Danish National Research Foundation, Project DNRF58. The authors would like to thank Dr. Tim J. Booth for the fruitful discussion and DTU-Danchip personnel for help during the microfabrication.

Return