Journal Home > Volume 7 , Issue 5

Incorporating pentagons and heptagons into the hexagonal networks of pristine carbon nanotubes (CNTs) can form various CNT-based nanostructures, as pentagons and heptagons will bend or twist the CNTs by introducing positive and negative curvature, respectively. Some typical so-made CNT-based nanostructures are reviewed in this article, including zero-dimensional toroidal CNTs, and one-dimensional kinked and coiled CNTs. Due to the presence of non-hexagonal rings and curved geometries, such nanostructures possess rather different structural, physical and chemical properties from their pristine CNT counterparts, which are reviewed comprehensively in this article. Additionally, their synthesis, modelling studies, and potential applications are discussed.


menu
Abstract
Full text
Outline
About this article

Curved carbon nanotubes: From unique geometries to novel properties and peculiar applications

Show Author's information Lizhao Liu1,2Feng Liu2( )Jijun Zhao1( )
Key Laboratory of Materials Modification by LaserIon and Electron Beams (Dalian University of Technology)Ministry of EducationDalian116024China
Department of Materials Science and EngineeringUniversity of UtahSalt Lake CityUtah84112USA

Abstract

Incorporating pentagons and heptagons into the hexagonal networks of pristine carbon nanotubes (CNTs) can form various CNT-based nanostructures, as pentagons and heptagons will bend or twist the CNTs by introducing positive and negative curvature, respectively. Some typical so-made CNT-based nanostructures are reviewed in this article, including zero-dimensional toroidal CNTs, and one-dimensional kinked and coiled CNTs. Due to the presence of non-hexagonal rings and curved geometries, such nanostructures possess rather different structural, physical and chemical properties from their pristine CNT counterparts, which are reviewed comprehensively in this article. Additionally, their synthesis, modelling studies, and potential applications are discussed.

Keywords: pentagon, heptagon, toroidal CNTs, kinked CNTs, coiled CNTs

References(254)

1

Ichihashi, T.; Ando, Y. Pentagons, heptagons and negative curvature in graphite microtubule growth. Nature 1992, 356, 776-778.

2

Ball, P. Needles in a carbon haystack. Nature 1991, 354, 18.

3

Charlier, J. C. Defects in carbon nanotubes. Acc. Chem. Res. 2002, 35, 1063-1069.

4

Liu, J.; Dai, H. J.; Hafner, J. H.; Colbert, D. T.; Smalley, R. E.; Tans, S. J.; Dekker, C. Fullerene "crop circles". Nature 1997, 385, 780-781.

5

Falvo, M.; Clary, G.; Taylor, R.; Chi, V.; Brooks, F.; Washburn, S.; Superfine, R. Bending and buckling of carbon nanotubes under large strain. Nature 1997, 389, 582-584.

6

Yao, Z.; Postma, H. W. C.; Balents, L.; Dekker, C. Carbon nanotube intramolecular junctions. Nature 1999, 402, 273-276.

7

Terrones, M.; Terrones, H.; Banhart, F.; Charlier, J. C.; Ajayan, P. M. Coalescence of single-walled carbon nanotubes. Science 2000, 288, 1226-1229.

8

Amelinckx, S.; Zhang, X. B.; Bernaerts, D.; Zhang, X. F.; Ivanov, V.; Nagy, J. B. A formation mechanism for catalytically grown helix-shaped graphite nanotubes. Science 1994, 265, 635-639.

9

Zhang, X. B.; Zhang, X. F.; Bernaerts, D.; van Tendeloo, G.; Amelinckx, S.; van Landuyt, J.; Ivanov, V.; Nagy, J. B.; Ph, L.; Lucas, A. A. The texture of catalytically grown coil-shaped carbon nanotubules. Europhys. Lett. 1994, 27, 141-146.

10

Martel, R.; Shea, H. R.; Avouris, P. Rings of single-walled carbon nanotubes. Nature 1999, 398, 299.

11

Martel, R.; Shea, H. R.; Avouris, P. Ring formation in single-wall carbon nanotubes. J. Phys. Chem. B 1999, 103, 7551-7556.

12

Sano, M.; Kamino, A.; Okamura, J.; Shinkai, S. Ring closure of carbon nanotubes. Science 2001, 293, 1299-1301.

13

Geng, J.; Ko, Y. K.; Youn, S. C.; Kim, Y. -H.; Kim, S. A.; Jung, D. -H.; Jung, H. -T. Synthesis of SWNT rings by noncovalent hybridization of porphyrins and single-walled carbon nanotubes. J. Phys. Chem. C 2008, 112, 12264-12271.

14

Song, L.; Ci, L. J.; Sun, L. F.; Jin, C.; Liu, L.; Ma, W.; Liu, D.; Zhao, X.; Luo, S.; Zhang, Z.; et al. Large-scale synthesis of rings of bundled single-walled carbon nanotubes by floating chemical vapor deposition. Adv. Mater. 2006, 18, 1817-1821.

15

Zhou, Z.; Wan, D.; Bai, Y.; Dou, X.; Song, L.; Zhou, W.; Mo, Y.; Xie, S. Ring formation from the direct floating catalytic chemical vapor deposition. Physica E 2006, 33, 24-27.

16

AuBuchon, J. F.; Chen, L. -H.; Gapin, A. I.; Kim, D. -W.; Daraio, C.; Jin, S. Multiple sharp bendings of carbon nanotubes during growth to produce zigzag morphology. Nano Lett. 2004, 4, 1781-1784.

17

AuBuchon, J. F.; Chen, L. -H.; Jin, S. Control of carbon capping for regrowth of aligned carbon nanotubes. J. Phys. Chem. B 2005, 109, 6044-6048.

18

Hertel, T.; Martel, R.; Avouris, P. Manipulation of individual carbon nanotubes and their interaction with surfaces. J. Phys. Chem. B 1998, 102, 910-915.

19

Postma, H. W. C.; Teepen, T.; Yao, Z.; Grifoni, M.; Dekker, C. Carbon nanotube single-electron transistors at room temperature. Science 2001, 293, 76-79.

20

Gao, R.; Wang, Z. L.; Fan, S. Kinetically controlled growth of helical and zigzag shapes of carbon nanotubes. J. Phys. Chem. B 2000, 104, 1227-1234.

21

Ismach, A.; Segev, L.; Wachtel, E.; Joselevich, E. Atomic-step-templated formation of single wall carbon nanotube patterns. Angew. Chem. Int. Edit. 2004, 43, 6140-6143.

22

Pan, L.; Hayashida, T.; Zhang, M.; Nakayama, Y. Field emission properties of carbon tubule nanocoils. Jpn. J. Appl. Phys. 2001, 40, L235-L237.

23

Xie, J.; Mukhopadyay, K.; Yadev, J.; Varadan, V. Catalytic chemical vapor deposition synthesis and electron microscopy observation of coiled carbon nanotubes. Smart Mater. Struct. 2003, 12, 744-748.

24

Hou, H.; Jun, Z.; Weller, F.; Greiner, A. Large-scale synthesis and characterization of helically coiled carbon nanotubes by use of Fe(CO)5 as floating catalyst precursor. Chem. Mater. 2003, 15, 3170-3175.

25

Zhong, D. Y.; Liu, S.; Wang, E. G. Patterned growth of coiled carbon nanotubes by a template-assisted technique. Appl. Phys. Lett. 2003, 83, 4423-4425.

26

Tang, N.; Wen, J.; Zhang, Y.; Liu, F.; Lin, K.; Du, Y. Helical carbon nanotubes: Catalytic particle size-dependent growth and magnetic properties. ACS Nano 2010, 4, 241-250.

27

Thostenson, E. T.; Ren, Z.; Chou, T. -W. Advances in the science and technology of carbon nanotubes and their composites: A review. Compos. Sci. Technol. 2001, 61, 1899-1912.

28

Lin, Y.; Taylor, S.; Li, H.; Fernando, K. A. S.; Qu, L.; Wang, W.; Gu, L.; Zhou, B.; Sun, Y. -P. Advances toward bioapplications of carbon nanotubes. J. Mater. Chem. 2004, 14, 527-541.

29

Britz, D. A.; Khlobystov, A. N. Noncovalent interactions of molecules with single walled carbon nanotubes. Chem. Soc. Rev. 2006, 35, 637-659.

30

Singh, P.; Campidelli, S.; Giordani, S.; Bonifazi, D.; Bianco, A.; Prato, M. Organic functionalisation and characterisation of single-walled carbon nanotubes. Chem. Soc. Rev. 2009, 38, 2214-2230.

31

Dresselhaus, M. S.; Dresselhaus, G.; Eklund, P. C. Science of Fullerenes and Carbon Nanotubes: Their Properties and Applications; Academic Press: Waltham, 1996.

DOI
32

Ebbesen, T. W. Carbon Nanotubes: Preparation and Properties; CRC press: Boca Raton, 1997.

33

Saito, R.; Dresselhaus, G.; Dresselhaus, M. S. Physical Properties of Carbon Nanotubes; Imperial College Press: London, 1998.

DOI
34

Reich, S.; Thomsen, C.; Maultzsch, J. Carbon Nanotubes; John Wiley & Sons: Hoboken, 2008.

35

Lau, K. T.; Lu, M.; Hui, D. Coiled carbon nanotubes: Synthesis and their potential applications in advanced composite structures. Compos. Part B: Eng. 2006, 37, 437-448.

36

Fejes, D.; Hernádi, K. A review of the properties and CVD synthesis of coiled carbon nanotubes. Materials 2010, 3, 2618-2642.

37

Hanus, M. J.; Harris, A. T. Synthesis, characterisation and applications of coiled carbon nanotubes. J. Nanosci. Nanotechnol. 2010, 10, 2261-2283.

38

Shaikjee, A.; Coville, N. J. The synthesis, properties and uses of carbon materials with helical morphology. J. Adv. Res. 2012, 3, 195-223.

39

Liu, L.; Zhao, J. Toroidal and coiled carbon nanotubes. In Syntheses and Applications of Carbon Nanotubes and Their Composites; Suzuki, S., Ed.; InTech: Croatia, 2013; pp. 257-282.

DOI
40

Ahlskog, M.; Seynaeve, E.; Vullers, R. J. M.; Van Haesendonck, C.; Fonseca, A.; Hernadi, K.; Nagy, J. B. Ring formations from catalytically synthesized carbon nanotubes. Chem. Phys. Lett. 1999, 300, 202-206.

41

Wang, Y.; Maspoch, D.; Zou, S.; Schatz, G. C.; Smalley, R. E.; Mirkin, C. A. Controlling the shape, orientation, and linkage of carbon nanotube features with nano affinity templates. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 2026-2031.

42

Kukushkin, A. B.; Neverov, V. S.; Marusov, N. L.; Semenov, I. B.; Kolbasov, B. N.; Voloshinov, V. V.; Afanasiev, A. P.; Tarasov, A. S.; Stankevich, V. G.; Svechnikov, N. Y.; et al. Few-nanometer-wide carbon toroids in the hydrocarbon films deposited in tokamak T-10. Chem. Phys. Lett. 2011, 506, 265-268.

43

Wang, X.; Wang, Z.; Liu, Y. Q.; Wang, C.; Bai, C.; Zhu, D. Ring formation and fracture of a carbon nanotube. Chem. Phys. Lett. 2001, 339, 36-40.

44

Lyn, M. E.; He, J.; Koplitz, B. Laser-induced production of large carbon-based toroids. Appl. Surf. Sci. 2005, 246, 44-47.

45

Motavas, S.; Omrane, B.; Papadopoulos, C. Large-area patterning of carbon nanotube ring arrays. Langmuir 2009, 25, 4655-4658.

46

Chen, L.; Wang, H.; Xu, J.; Shen, X.; Yao, L.; Zhu, L.; Zeng, Z.; Zhang, H.; Chen, H. Controlling reversible elastic deformation of carbon nanotube rings. J. Am. Chem. Soc. 2011, 133, 9654-9657.

47

Komatsu, N.; Shimawaki, T.; Aonuma, S.; Kimura, T. Ultrasonic isolation of toroidal aggregates of single-walled carbon nanotubes. Carbon 2006, 44, 2091-2093.

48

Guo, A.; Fu, Y.; Guan, L.; Zhang, Z.; Wu, W.; Chen, J.; Shi, Z.; Gu, Z.; Huang, R.; Zhang, X. Spontaneously formed closed rings of single-wall carbon nanotube bundles and their physical mechanism. J. Phys. Chem. C 2007, 111, 3555-3559.

49

Colomer, J. F.; Henrard, L.; Flahaut, E.; Van Tendeloo, G.; Lucas, A. A.; Lambin, P. Rings of double-walled carbon nanotube bundles. Nano Lett. 2003, 3, 685-689.

50

Yu, H.; Zhang, Q.; Luo, G.; Wei, F. Rings of triple-walled carbon nanotube bundles. Appl. Phys. Lett. 2006, 89, 223106.

51

Dunlap, B. I. Connecting carbon tubules. Phys. Rev. B 1992, 46, 1933-1936.

52

Itoh, S.; Ihara, S.; Kitakami, J. -I. Toroidal form of carbon C360. Phys. Rev. B 1993, 47, 1703-1704.

53

Ihara, S.; Itoh, S.; Kitakami, J. -I. Toroidal forms of graphitic carbon. Phys. Rev. B 1993, 47, 12908-12911.

54

Itoh, S.; Ihara, S. Toroidal forms of graphitic carbon. II. Elongated tori. Phys. Rev. B 1993, 48, 8323-8328.

55

Kirby, E. C.; Mallion, R. B.; Pollak, P. Toroidal polyhexes. J. Chem. Soc., Faraday Trans. 1993, 89, 1945-1953.

56

Liu, L.; Jayanthi, C. S.; Wu, S. Y. Structural and electronic properties of a carbon nanotorus: Effects of delocalized and localized deformations. Phys. Rev. B 2001, 64, 033412.

57

Liu, L.; Guo, G. Y.; Jayanthi, C. S.; Wu, S. Y. Colossal paramagnetic moments in metallic carbon nanotori. Phys. Rev. Lett. 2002, 88, 217206.

58

Hod, O.; Rabani, E.; Baer, R. Carbon nanotube closed-ring structures. Phys. Rev. B 2003, 67, 195408.

59

Cox, B. J.; Hill, J. M. New carbon molecules in the form of elbow-connected nanotori. J. Phys. Chem. C 2007, 111, 10855-10860.

60

Baowan, D.; Cox, B. J.; Hill, J. M. Toroidal molecules formed from three distinct carbon nanotubes. J. Math. Chem. 2008, 44, 515-527.

61

Liu, L.; Zhang, L.; Gao, H.; Zhao, J. Structure, energetics, and heteroatom doping of armchair carbon nanotori. Carbon 2011, 49, 4518-4523.

62

Itoh, S.; Ihara, S. Isomers of the toroidal forms of graphitic carbon. Phys. Rev. B 1994, 49, 13970-13974.

63

Nagy, C.; Nagy, K.; Diudea, M. Elongated tori from armchair DWNT. J. Math. Chem. 2009, 45, 452-459.

64

László, I.; Rassat, A. Toroidal and spherical fullerene-like molecules with only pentagonal and heptagonal faces. Int. J. Quantum Chem. 2001, 84, 136-139.

65

Ihara, S.; Itoh, S. Helically coiled and toroidal cage forms of graphitic carbon. Carbon 1995, 33, 931-939.

66

Taşcı, E.; Yazgan, E.; Malcı oğlu, O. B.; Erkoç, Ş. Stability of carbon nanotori under heat treatment: Molecular-dynamics simulations. Fullerenes Nanotubes Carbon Nanostruct. 2005, 13, 147-154.

67

Chen, C.; Chang, J. -G.; Ju, S. -P.; Hwang, C. -C. Thermal stability and morphological variation of carbon nanorings of different radii during the temperature elevating process: A molecular dynamics simulation study. J. Nanoparticle Res. 2011, 13, 1995-2006.

68

Yang, L.; Chen, J.; Dong, J. Stability of single-wall carbon nanotube tori. Physica Status Solidi B 2004, 241, 1269-1273.

69

Feng, C.; Liew, K. M. Energetics and structures of carbon nanorings. Carbon 2009, 47, 1664-1669.

70

Liu, P.; Zhang, Y. W.; Lu, C. Structures and stability of defect-free multiwalled carbon toroidal rings. J. Appl. Phys. 2005, 98, 113522.

71

Han, J. Energetics and structures of fullerene crop circles. Chem. Phys. Lett. 1998, 282, 187-191.

72

Meunier, V.; Lambin, P.; Lucas, A. A. Atomic and electronic structures of large and small carbon tori. Phys. Rev. B 1998, 57, 14886-14890.

73

Chang, I.; Chou, J. -W. A molecular analysis of carbon nanotori formation. J. Appl. Phys. 2012, 112, 063523.

74

Chen, N.; Lusk, M. T.; van Duin, A. C. T.; Goddard, W. A., Ⅲ. Mechanical properties of connected carbon nanorings via molecular dynamics simulation. Phys. Rev. B 2005, 72, 085416.

75

Çağin, T.; Gao, G.; Goddard Ⅲ, W. A. Computational studies on mechanical properties of carbon nanotori. Turk. J. Phys. 2006, 30, 221-229.

76

Feng, C.; Liew, K. M. A molecular mechanics analysis of the buckling behavior of carbon nanorings under tension. Carbon 2009, 47, 3508-3514.

77

Feng, C.; Liew, K. M. Buckling behavior of armchair and zigzag carbon nanorings. J. Comput. Theor. Nanosci. 2010, 7, 2049-2053.

78

Zheng, M.; Ke, C. Elastic deformation of carbon-nanotube nanorings. Small 2010, 6, 1647-1655.

79

Zheng, M.; Ke, C. Mechanical deformation of carbon nanotube nano-rings on flat substrate. J. Appl. Phys. 2011, 109, 074304.

80

Zhang, Z.; Yang, Z.; Wang, X.; Yuan, J.; Zhang, H.; Qiu, M.; Peng, J. The electronic structure of a deformed chiral carbon nanotorus. J. Phys. : Condens. Matter 2005, 17, 4111-4120.

81

Ceulemans, A.; Chibotaru, L. F.; Bovin, S. A.; Fowler, P. W. The electronic structure of polyhex carbon tori. J. Chem. Phys. 2000, 112, 4271-4278.

82

Liu, C. P.; Ding, J. W. Electronic structure of carbon nanotori: The roles of curvature, hybridization, and disorder. J. Phys. : Condens. Matter 2006, 18, 4077-4084.

83

Oh, D. -H.; Mee Park, J.; Kim, K. S. Structures and electronic properties of small carbon nanotube tori. Phys. Rev. B 2000, 62, 1600-1603.

84

Yazgan, E.; Taşci, E.; Malcioğlu, O. B.; Erkoç, Ş. Electronic properties of carbon nanotoroidal structures. J. Mol. Struct. : Theochem. 2004, 681, 231-234.

85

Wu, X.; Zhou, R.; Yang, J.; Zeng, X. C. Density-functional theory studies of step-kinked carbon nanotubes. J. Phys. Chem. C 2011, 115, 4235-4239.

86

Haddon, R. C. Electronic properties of carbon toroids. Nature 1997, 388, 31-32.

87

Rodríguez-Manzo, J. A.; López-Urías, F.; Terrones, M.; Terrones, H. Magnetism in corrugated carbon nanotori: The importance of symmetry, defects, and negative curvature. Nano Lett. 2004, 4, 2179-2183.

88

Lin, M. F.; Chuu, D. S. Persistent currents in toroidal carbon nanotubes. Phys. Rev. B 1998, 57, 6731-6737.

89

Latil, S.; Roche, S.; Rubio, A. Persistent currents in carbon nanotube based rings. Phys. Rev. B 2003, 67, 165420.

90

Shyu, F. L.; Tsai, C. C.; Chang, C. P.; Chen, R. B.; Lin, M. F. Magnetoelectronic states of carbon toroids. Carbon 2004, 42, 2879-2885.

91

Margańska, M.; Szopa, M.; Zipper, E. Aharonov-Bohm effect in carbon nanotubes and tori. Physica Status Solidi B 2005, 242, 285-290.

92

Zhang, Z. H.; Yuan, J. H.; Qiu, M.; Peng, J. C.; Xiao, F. L. Persistent currents in carbon nanotori: Effects of structure deformations and chirality. J. Appl. Phys. 2006, 99, 104311.

93

Tsai, C. C.; Shyu, F. L.; Chiu, C. W.; Chang, C. P.; Chen, R. B.; Lin, M. F. Magnetization of armchair carbon tori. Phys. Rev. B 2004, 70, 075411.

94

Liu, C. P.; Chen, H. B.; Ding, J. W. Magnetic response of carbon nanotori: The importance of curvature and disorder. J. Phys. : Condens. Matter 2008, 20, 015206.

95

Liu, C. P.; Xu, N. Magnetic response of chiral carbon nanotori: The dependence of torus radius. Physica B 2008, 403, 2884-2887.

96

Rodríguez-Manzo, J. A.; López-Urías, F.; Terrones, M.; Terrones, H. Anomalous paramagnetism in doped carbon nanostructures. Small 2007, 3, 120-125.

97

Hilder, T. A.; Hill, J. M. Orbiting atoms and C60 fullerenes inside carbon nanotori. J. Appl. Phys. 2007, 101, 064319.

98

Lusk, M. T.; Hamm, N. Ab initio study of toroidal carbon nanotubes with encapsulated atomic metal loops. Phys. Rev. B 2007, 76, 125422.

99

Chan, Y.; Cox, B. J.; Hill, J. M. Carbon nanotori as traps for atoms and ions. Physica B 2012, 407, 3479-3483.

100

Mukherjee, B.; Maiti, P. K.; Dasgupta, C.; Sood, A. K. Single-file diffusion of water inside narrow carbon nanorings. ACS Nano 2010, 4, 985-991.

101

Castillo-Alvarado, F. d. L.; Ortíz-López, J.; Arellano, J. S.; Cruz-Torres, A. Hydrogen atorage on beryllium-coated toroidal carbon nanostructure C120 modeled with density functional theory. Adv. Sci. Technol. 2010, 72, 188-195.

102

Wang, M. S.; Peng, L. M.; Wang, J. Y.; Chen, Q. Shaping carbon nanotubes and the effects on their electrical and mechanical properties. Adv. Funct. Mater. 2006, 16, 1462-1468.

103

Geblinger, N.; Ismach, A.; Joselevich, E. Self-organized nanotube serpentines. Nat. Nanotechnol. 2008, 3, 195-200.

104

Yao, Y.; Dai, X.; Feng, C.; Zhang, J.; Liang, X.; Ding, L.; Choi, W.; Choi, J. Y.; Kim, J. M.; Liu, Z. Crinkling ultralong carbon nanotubes into serpentines by a controlled landing process. Adv. Mater. 2009, 21, 4158-4162.

105

Kocabas, C.; Kang, S. J.; Ozel, T.; Shim, M.; Rogers, J. A. Improved synthesis of aligned arrays of single-walled carbon nanotubes and their implementation in thin film type transistor. J. Phys. Chem. C 2007, 111, 17879-17886.

106

Duan, X.; Son, H.; Gao, B.; Zhang, J.; Wu, T.; Samsonidze, G. G.; Dresselhaus, M. S.; Liu, Z.; Kong, J. Resonant Raman spectroscopy of individual strained single-wall carbon nanotubes. Nano Lett. 2007, 7, 2116-2121.

107

Gao, B.; Duan, X.; Zhang, J.; Wu, T.; Son, H.; Kong, J.; Liu, Z. Raman spectral probing of electronic transition energy Eii Variation of Individual SWNTs under Torsional Strain. Nano Lett. 2007, 7, 750-753.

108

Gao, B.; Duan, X.; Zhang, J.; Wu, G.; Dong, J.; Liu, Z. G-band variation of individual single-walled carbon nanotubes under torsional strain. J. Phys. Chem. C 2008, 112, 10789-10793.

109

Xu, Z.; Buehler, M. J. Strain controlled thermomutability of single-walled carbon nanotubes. Nanotechnology 2009, 20, 185701.

110

Lu, W. Quantum conductance of a helically coiled carbon nanotube. Sci. Technol. Adv. Mater. 2005, 6, 809-813.

111

Liu, L.; Gao, J.; Guo, X.; Zhao, J. Electromechanical properties of zigzag-shaped carbon nanotubes. Phys. Chem. Chem. Phys. 2013, 15, 17134-17141.

112

Wong, E. W.; Sheehan, P. E.; Lieber, C. M. Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes. Science 1997, 277, 1971-1975.

113

Natsuki, T.; Endo, M. Stress simulation of carbon nanotubes in tension and compression. Carbon 2004, 42, 2147-2151.

114

Xiao, J. R.; Gama, B. A.; Gillespie Jr., J. W. An analytical molecular structural mechanics model for the mechanical properties of carbon nanotubes. Int. J. Solids Struct. 2005, 42, 3075-3092.

115

Tekleab, D.; Czerw, R.; Carroll, D.; Ajayan, P. Electronic structure of kinked multiwalled carbon nanotubes. Appl. Phys. Lett. 2000, 76, 3594-3596.

116

Lu, J. -Q.; Wu, J.; Duan, W.; Liu, F.; Zhu, B. -F.; Gu, B. -L. Metal-to-semiconductor transition in squashed armchair carbon nanotubes. Phys. Rev. Lett. 2003, 90, 156601.

117

Wu, J.; Zang, J.; Larade, B.; Guo, H.; Gong, X. G.; Liu, F. Computational design of carbon nanotube electromechanical pressure sensors. Phys. Rev. B 2004, 69, 153406.

118

Baughman, R. H.; Cui, C.; Zakhidov, A. A.; Iqbal, Z.; Barisci, J. N.; Spinks, G. M.; Wallace, G. G.; Mazzoldi, A.; De Rossi, D.; Rinzler, A. G. Carbon nanotube actuators. Science 1999, 284, 1340-1344.

119

Cao, J.; Wang, Q.; Dai, H. Electromechanical properties of metallic, quasimetallic, and semiconducting carbon nanotubes under stretching. Phys. Rev. Lett. 2003, 90, 157601.

120

Srivastava, D.; Brenner, D. W.; Schall, J. D.; Ausman, K. D.; Yu, M.; Ruoff, R. S. Predictions of enhanced chemical reactivity at regions of local conformational strain on carbon nanotubes: Kinky chemistry. J. Phys. Chem. B 1999, 103, 4330-4337.

121

Li, X.; Wang, X.; Zhang, L.; Lee, S.; Dai, H. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 2008, 319, 1229-1232.

122

Jia, X.; Hofmann, M.; Meunier, V.; Sumpter, B. G.; Campos-Delgado, J.; Romo-Herrera, J. M.; Son, H.; Hsieh, Y. -P.; Reina, A.; Kong, J.; et al. Controlled formation of sharp zigzag and armchair edges in graphitic nanoribbons. Science 2009, 323, 1701-1705.

123

Warner, J. H.; Schäffel, F.; Rümmeli, M. H.; Büchner, B. Examining the edges of multi-layer graphene sheets. Chem. Mater. 2009, 21, 2418-2421.

124

Cai, J.; Ruffieux, P.; Jaafar, R.; Bieri, M.; Braun, T.; Blankenburg, S.; Muoth, M.; Seitsonen, A. P.; Saleh, M.; Feng, X. Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 2010, 466, 470-473.

125

Wu, X.; Zeng, X. C. Sawtooth-like graphene nanoribbon. Nano Res. 2008, 1, 40-45.

126

Kou, L.; Tang, C.; Chen, C.; Guo, W. Hybrid W-shaped graphene nanoribbons: Distinct electronic and transport properties. J. Appl. Phys. 2011, 110, 124312.

127

Yan, Q.; Huang, B.; Yu, J.; Zheng, F.; Zang, J.; Wu, J.; Gu, B. -L.; Liu, F.; Duan, W. Intrinsic current-voltage characteristics of graphene nanoribbon transistors and effect of edge doping. Nano Lett. 2007, 7, 1469-1473.

128

Wang, Z. F.; Shi, Q. W.; Li, Q.; Wang, X.; Hou, J. G.; Zheng, H.; Yao, Y.; Chen, J. Z-shaped graphene nanoribbon quantum dot device. Appl. Phys. Lett. 2007, 91, 053109.

129

Kong, D.; Randel, J. C.; Peng, H.; Cha, J. J.; Meister, S.; Lai, K.; Chen, Y.; Shen, Z. -X.; Manoharan, H. C.; Cui, Y. Topological insulator nanowires and nanoribbons. Nano Lett. 2009, 10, 329-333.

130

Yu, D.; Lupton, E. M.; Gao, H.; Zhang, C.; Liu, F. A unified geometric rule for designing nanomagnetism in graphene. Nano Res. 2008, 1, 497-501.

131

Wang, Z.; Jin, S.; Liu, F. Spatially separated spin carriers in spin-semiconducting graphene nanoribbons. Phys. Rev. Lett. 2013, 111, 096803.

132

Li, Y.; Zhou, Z.; Shen, P.; Chen, Z. Electronic and magnetic properties of hybrid graphene nanoribbons with zigzag-armchair heterojunctions. J. Phys. Chem. C 2011, 116, 208-213.

133

Huang, W.; Wang, J. -S.; Liang, G. Theoretical study on thermoelectric properties of kinked graphene nanoribbons. Phys. Rev. B 2011, 84, 045410.

134

Zhang, H. -S.; Guo, Z. -X.; Gong, X. -G.; Cao, J. -X. Thermal conductivity of sawtooth-like graphene nanoribbons: A molecular dynamics study. J. Appl. Phys. 2012, 112, 123508.

135

Koos, A. A.; Ehlich, R.; Horvath, Z. E.; Osvath, Z.; Gyulai, J.; Nagy, J. B.; Biro, L. P. STM and AFM investigation of coiled carbon nanotubes produced by laser evaporation of fullerene. Mater. Sci. Eng. : C 2003, 23, 275-278.

136

Saveliev, A. V.; Merchan-Merchan, W.; Kennedy, L. A. Metal catalyzed synthesis of carbon nanostructures in an opposed flow methane oxygen flame. Combust. Flame 2003, 135, 27-33.

137

Bai, J. B.; Hamon, A. L.; Marraud, A.; Jouffrey, B.; Zymla, V. Synthesis of SWNTs and MWNTs by a molten salt (NaCl) method. Chem. Phys. Lett. 2002, 365, 184-188.

138

Ajayaghosh, A.; Vijayakumar, C.; Varghese, R.; George, S. J. Cholesterol-aided supramolecular control over chromophore packing: Twisted and coiled helices with distinct optical, chiroptical, and morphological features. Angew. Chem. Int. Edit. 2006, 45, 456-460.

139

Yamamoto, T.; Fukushima, T.; Aida, T. Self-assembled nanotubes and nanocoils from ss-conjugated building blocks. In Self-Assembled Nanomaterials II. Toshimi, S., Ed.; Springer: Berlin, 2008; pp. 1-27.

DOI
140

Fejes, D.; Hernádi, K. A review of the properties and CVD synthesis of coiled carbon nanotubes. Materials 2010, 3, 2618-2642.

141

Hokushin, S.; Pan, L.; Nakayama, Y. Diameter control of carbon nanocoils by the catalyst of organic metals. Jpn. J. Appl. Phys. 2007, 46, 5383-5385.

142

Li, D.; Pan, L.; Wu, Y.; Peng, W. The effect of changes in synthesis temperature and acetylene supply on the morphology of carbon nanocoils. Carbon 2012, 50, 2571-2580.

143

Wen, Y.; Shen, Z. Synthesis of regular coiled carbon nanotubes by Ni-catalyzed pyrolysis of acetylene and a growth mechanism analysis. Carbon 2001, 39, 2369-2374.

144

Bajpai, V.; Dai, L.; Ohashi, T. Large-scale synthesis of perpendicularly aligned helical carbon nanotubes. J. Am. Chem. Soc. 2004, 126, 5070-5071.

145

Pan, L. J.; Zhang, M.; Nakayama, Y. Growth mechanism of carbon nanocoils. J. Appl. Phys. 2002, 91, 10058-10061.

146

Zhang, X. F.; Zhang, Z. Polygonal spiral of coil-shaped carbon nanotubules. Phys. Rev. B 1995, 52, 5313-5317.

147

Lu, M.; Li, H. -L.; Lau, K. -T. Formation and growth mechanism of dissimilar coiled carbon nanotubes by reduced-pressure catalytic chemical vapor deposition. J. Phys. Chem. B 2004, 108, 6186-6192.

148

Bai, J. B. Growth of nanotube/nanofibre coils by CVD on an alumina substrate. Mater. Lett. 2003, 57, 2629-2633.

149

Zhang, G. Y.; Jiang, X.; Wang, E. G. Self-assembly of carbon nanohelices: Characteristics and field electron emission properties. Appl. Phys. Lett. 2004, 84, 2646-2648.

150

Varadan, V. K.; Xie, J. Synthesis of carbon nanocoils by microwave CVD. Smart Mater. Struct. 2002, 11, 728-734.

151

Hyeon, T.; Han, S.; Sung, Y. -E.; Park, K. -W.; Kim, Y. -W. High-performance direct methanol fuel cell electrodes using solid-phase-synthesized carbon nanocoils. Angew. Chem. Int. Edit. 2003, 42, 4352-4356.

152

Park, K. -W.; Sung, Y. -E.; Han, S.; Yun, Y.; Hyeon, T. Origin of the enhanced catalytic activity of carbon nanocoil-supported PtRu alloy electrocatalysts. J. Phys. Chem. B 2004, 108, 939-944.

153

Kuzuya, C.; In - Hwang, W.; Hirako, S.; Hishikawa, Y.; Motojima, S. Preparation, morphology, and growth mechanism of carbon nanocoils. Chem. Vapor Depos. 2002, 8, 57-62.

DOI
154

Fonseca, A.; Hernadi, K.; Nagy, J. B.; Lambin, P.; Lucas, A. A. Growth mechanism of coiled carbon nanotubes. Synthetic Met. 1996, 77, 235-242.

155

Chen, X.; Yang, S.; Takeuchi, K.; Hashishin, T.; Iwanaga, H.; Motojiima, S. Conformation and growth mechanism of the carbon nanocoils with twisting form in comparison with that of carbon microcoils. Diam. Relat. Mater. 2003, 12, 1836-1840.

156

Bandaru, P. R.; Daraio, C.; Yang, K.; Rao, A. M. A plausible mechanism for the evolution of helical forms in nanostructure growth. J. Appl. Phys. 2007, 101, 094307.

157

Dunlap, B. I. Relating carbon tubules. Phys. Rev. B 1994, 49, 5643-5651.

158

Fonseca, A.; Hernadi, K.; Nagy, J. B.; Lambin, P.; Lucas, A. A. Model structure of perfectly graphitizable coiled carbon nanotubes. Carbon 1995, 33, 1759-1775.

159

Ihara, S.; Itoh, S.; Kitakami, J. -I. Helically coiled cage forms of graphitic carbon. Phys. Rev. B 1993, 48, 5643-5647.

160

Setton, R.; Setton, N. Carbon nanotubes: Ⅲ. Toroidal structures and limits of a model for the construction of helical and S-shaped nanotubes. Carbon 1997, 35, 497-505.

161

Akagi, K.; Tamura, R.; Tsukada, M.; Itoh, S.; Ihara, S. Electronic structure of helically coiled cage of graphitic carbon. Phys. Rev. Lett. 1995, 74, 2307-2310.

162

Akagi, K.; Tamura, R.; Tsukada, M.; Itoh, S.; Ihara, S. Electronic structure of helically coiled carbon nanotubes: Relation between the phason lines and energy band features. Phys. Rev. B 1996, 53, 2114-2120.

163

Biró, L. P.; Márk, G. I.; Lambin, P. Regularly coiled carbon nanotubes. IEEE T. Nanotechnol. 2003, 2, 362-367.

164

Liu, L.; Gao, H.; Zhao, J.; Lu, J. Superelasticity of carbon nanocoils from atomistic quantum simulations. Nanoscale Res. Lett. 2010, 5, 478-483.

165

Feng, C.; Liew, K. M. Structural stability of carbon nanosprings. Carbon 2011, 49, 4688-4694.

166

Zhong-can, O. -Y.; Su, Z. -B.; Wang, C. -L. Coil formation in multishell carbon nanotubes: Competition between curvature elasticity and interlayer adhesion. Phys. Rev. Lett. 1997, 78, 4055-4058.

167

Wu, J.; He, J.; Odegard, G. M.; Nagao, S.; Zheng, Q.; Zhang, Z. Giant stretchability and reversibility of tightly wound helical carbon nanotubes. J. Am. Chem. Soc. 2013, 135, 13775-13785.

168

Volodin, A.; Ahlskog, M.; Seynaeve, E.; Van Haesendonck, C.; Fonseca, A.; Nagy, J. B. Imaging the elastic properties of coiled carbon nanotubes with atomic force microscopy. Phys. Rev. Lett. 2000, 84, 3342-3345.

169

Hayashida, T.; Pan, L.; Nakayama, Y. Mechanical and electrical properties of carbon tubule nanocoils. Physica B 2002, 323, 352-353.

170

Chen, X.; Zhang, S.; Dikin, D. A.; Ding, W.; Ruoff, R. S.; Pan, L.; Nakayama, Y. Mechanics of a carbon nanocoil. Nano Lett. 2003, 3, 1299-1304.

171

Huang, W. M. Mechanics of coiled nanotubes in uniaxial tension. Mater. Sci. Eng. : A 2005, 408, 136-140.

172

Neng-Kai, C.; Shuo-Hung, C. Determining mechanical properties of carbon microcoils using lateral force microscopy. IEEE T. Nanotechnol. 2008, 7, 197-201.

173

Poggi, M. A.; Boyles, J. S.; Bottomley, L. A.; McFarland, A. W.; Colton, J. S.; Nguyen, C. V.; Stevens, R. M.; Lillehei, P. T. Measuring the compression of a carbon nanospring. Nano Lett. 2004, 4, 1009-1016.

174

Fonseca, A. F. D.; Galvao, D. S. Mechanical properties of nanosprings. Phys. Rev. Lett. 2004, 92, 175502.

175

da Fonseca, A. F.; Malta, C. P.; Galvao, D. S. Mechanical properties of amorphous nanosprings. Nanotechnology 2006, 17, 5620-5626.

176

Ghaderi, S. H.; Hajiesmaili, E. Nonlinear analysis of coiled carbon nanotubes using molecular dynamics finite element method. Mater. Sci. Eng. : A 2013, 582, 225-234.

177

Ghaderi, S. H.; Hajiesmaili, E. Molecular structural mechanics applied to coiled carbon nanotubes. Comput. Mater. Sci. 2010, 55, 344-349.

178

Coluci, V. R.; Fonseca, A. F.; Galvão, D. S.; Daraio, C. Entanglement and the nonlinear elastic behavior of forests of coiled carbon nanotubes. Phys. Rev. Lett. 2008, 100, 086807.

179

Kaneto, K.; Tsuruta, M.; Motojima, S. Electrical properties of carbon micro coils. Synthetic Met. 1999, 103, 2578-2579.

180

Shen, J.; Chen, Z.; Wang, N.; Li, W.; Chen, L. Electrical properties of a single microcoiled carbon fiber. Appl. Phys. Lett. 2006, 89, 153132.

181

Fujii, M.; Matsui, M.; Motojima, S.; Hishikawa, Y. Magnetoresistance in carbon micro-coils obtained by chemical vapor deposition. Thin Solid Film. 2002, 409, 78-81.

182

Ebbesen, T. W.; Lezec, H. J.; Hiura, H.; Bennett, J. W.; Ghaemi, H. F.; Thio, T. Electrical conductivity of individual carbon nanotubes. Nature 1996, 382, 54-56.

183

Chiu, H. -S.; Lin, P. -I.; Wu, H. -C.; Hsieh, W. -H.; Chen, C. -D.; Chen, Y. -T. Electron hopping conduction in highly disordered carbon coils. Carbon 2009, 47, 1761-1769.

184

Tang, N.; Kuo, W.; Jeng, C.; Wang, L.; Lin, K.; Du, Y. Coil-in-coil carbon nanocoils: 11 gram-scale synthesis, single nanocoil electrical properties, and electrical contact improvement. ACS Nano 2010, 4, 781-788.

185

Liu, L.; Gao, H.; Zhao, J.; Lu, J. Quantum conductance of armchair carbon nanocoils: Roles of geometry effects. Sci. China Phys. Mech. Astron. 2011, 54, 841-845.

186

Liu, J.; Webster, S.; Carroll, D. L. Highly aligned coiled nitrogen-doped carbon nanotubes synthesized by injection-assisted chemical vapor deposition. Appl. Phys. Lett. 2006, 88, 213119.

187

Jafri, R. I.; Rajalakshmi, N.; Ramaprabhu, S. Nitrogen-doped multi-walled carbon nanocoils as catalyst support for oxygen reduction reaction in proton exchange membrane fuel cell. J. Power Sources 2010, 195, 8080-8083.

188

Wen, J.; Zhang, Y.; Tang, N.; Wan, X.; Xiong, Z.; Zhong, W.; Wang, Z.; Wu, X.; Du, Y. Synthesis, photoluminescence, and magnetic properties of nitrogen-doping helical carbon nanotubes. J. Phys. Chem. C 2011, 115, 12329-12334.

189

Rakhi, R. B.; Chen, W.; Alshareef, H. N. Conducting polymer/carbon nanocoil composite electrodes for efficient supercapacitors. J. Mater. Chem. 2012, 22, 5177-5183.

190

Saito, Y.; Uemura, S.; Hamaguchi, K. Cathode ray tube lighting elements with carbon nanotube field emitters. Jpn. J. Appl. Phys. 1998, 37, L346-L348.

191

Choi, W. B.; Chung, D. S.; Kang, J. H.; Kim, H. Y.; Jin, Y. W.; Han, I. T.; Lee, Y. H.; Jung, J. E.; Lee, N. S.; Park, G. S. Fully sealed, high-brightness carbon-nanotube field-emission display. Appl. Phys. Lett. 1999, 75, 3129-3131.

192

Jiao, J.; Einarsson, E.; Tuggle, D. W.; Love, L.; Prado, J.; Coia, G. M. High-yield synthesis of carbon coils on tungsten substrates and their behavior in the presence of an electric field. J. Mater. Res. 2003, 18, 2580-2587.

193

Einarsson, E.; Tuggle, D. W.; Jiao, J. In situ alignment of carbon nanocoils and their field emission behavior induced by an electric field. Appl. Phys. A 2004, 79, 2049-2054.

194

Hokushin, S.; Pan, L.; Konishi, Y.; Tanaka, H.; Nakayama, Y. Field emission properties and structural changes of a stand-alone carbon nanocoil. Jpn. J. Appl. Phys. 2007, 46, L565-L567.

195

Ok, J. G.; Kim, B. H.; Sung, W. Y.; Lee, S. M.; Lee, S. W.; Kim, W. J.; Park, J. W.; Chu, C. N.; Kim, Y. H. Electrical discharge machining of carbon nanomaterials in air: Machining characteristics and the advanced field emission applications. J. Micromech. Microeng. 2008, 18, 025007.

196

Lahiri, I.; Seelaboyina, R.; Hwang, J. Y.; Banerjee, R.; Choi, W. Enhanced field emission from multi-walled carbon nanotubes grown on pure copper substrate. Carbon 2010, 48, 1531-1538.

197

Tang, N.; Yang, Y.; Lin, K.; Zhong, W.; Au, C.; Du, Y. Synthesis of plait-like carbon nanocoils in ultrahigh yield, and their microwave absorption properties. J. Phys. Chem. C 2008, 112, 10061-10067.

198

Liu, Z.; Bai, G.; Huang, Y.; Li, F.; Ma, Y.; Guo, T.; He, X.; Lin, X.; Gao, H.; Chen, Y. Microwave absorption of single-walled carbon nanotubes/soluble cross-linked polyurethane composites. J. Phys. Chem. C 2007, 111, 13696-13700.

199

Tang, N.; Zhong, W.; Au, C.; Yang, Y.; Han, M.; Lin, K.; Du, Y. Synthesis, microwave electromagnetic, and microwave absorption properties of twin carbon nanocoils. J. Phys. Chem. C 2008, 112, 19316-19323.

200

Gupta, B. K.; Shanker, V.; Arora, M.; Haranath, D. Photoluminescence and electron paramagnetic resonance studies of springlike carbon nanofibers. Appl. Phys. Lett. 2009, 95, 073115.

201

Ma, H.; Pan, L.; Zhao, Q.; Zhao, Z.; Zhao, J.; Qiu, J. Electrically driven light emission from a single suspended carbon nanocoil. Carbon 2012, 50, 5537-5542.

202

Ma, H.; Pan, L.; Zhao, Q.; Peng, W. Near-infrared response of a single carbon nanocoil. Nanoscale 2013, 5, 1153-1158.

203

Motojima, S.; Chen, X.; Yang, S.; Hasegawa, M. Properties and potential applications of carbon microcoils/nanocoils. Diam. Relat. Mater. 2004, 13, 1989-1992.

204

Volodin, A.; Buntinx, D.; Ahlskog, M.; Fonseca, A.; Nagy, J. B.; Van Haesendonck, C. Coiled carbon nanotubes as self-sensing mechanical resonators. Nano Lett. 2004, 4, 1775-1779.

205

Bell, D. J.; Sun, Y.; Zhang, L.; Dong, L. X.; Nelson, B. J.; Grutzmacher, D. Three-dimensional nanosprings for electromechanical sensors. Sensor. Actuat. A: Phys. 2006, 130-131, 54-61.

206

Kato, Y.; Adachi, N.; Okuda, T.; Yoshida, T.; Motojima, S.; Tsuda, T. Evaluation of induced electromotive force of a carbon micro coil. Jpn. J. Appl. Phys. 2003, 42, 5035-5037.

207

Shaoming, Y.; Xiuqin, C.; Aoki, H.; Motojima, S. Tactile microsensor elements prepared from aligned superelastic carbon microcoils and polysilicone matrix. Smart Mater. Struct. 2006, 15, 687-694.

208

Greenshields, M. W. C. C.; Hümmelgen, I. A.; Mamo, M. A.; Shaikjee, A.; Mhlanga, S. D.; van Otterlo, W. A. L.; Coville, N. J. Composites of polyvinyl alcohol and carbon (coils, undoped and nitrogen doped multiwalled carbon nanotubes) as ethanol, methanol and toluene vapor sensors. J. Nanosci. Nanotechnol. 2011, 11, 10211-10218.

209

Lau, K. -T.; Lu, M.; Liao, K. Improved mechanical properties of coiled carbon nanotubes reinforced epoxy nanocomposites. Compos. Part A: Appl. Sci. Manuf. 2006, 37, 1837-1840.

210

Yoshimura, K.; Nakano, K.; Miyake, T.; Hishikawa, Y.; Motojima, S. Effectiveness of carbon microcoils as a reinforcing material for a polymer matrix. Carbon 2006, 44, 2833-2838.

211

Li, X. -F.; Lau, K. -T.; Yin, Y. -S. Mechanical properties of epoxy-based composites using coiled carbon nanotubes. Compos. Part A: Appl. Sci. Manuf. 2006, 37, 1837-1840.

212

Sanada, K.; Takada, Y.; Yamamoto, S.; Shindo, Y. Analytical and experimental characterization of stiffness and damping in carbon nanocoil reinforced polymer composites. J. Solid Mech. Mater. Eng. 2008, 2, 1517-1527.

213

Katsuno, T.; Chen, X.; Yang, S.; Motojima, S.; Homma, M.; Maeno, T.; Konyo, M. Observation and analysis of percolation behavior in carbon microcoils/silicone-rubber composite sheets. Appl. Phys. Lett. 2006, 88, 232115.

214

Yoshimura, K.; Nakano, K.; Miyake, T.; Hishikawa, Y.; Kuzuya, C.; Katsuno, T.; Motojima, S. Effect of compressive and tensile strains on the electrical resistivity of carbon microcoil/silicone-rubber composites. Carbon 2007, 45, 1997-2003.

215

Bi, H.; Kou, K. -C.; Ostrikov, K.; Yan, L. -K.; Wang, Z. -C. Microstructure and electromagnetic characteristics of Ni nanoparticle film coated carbon microcoils. J. Alloy. Compd. 2009, 478, 796-800.

216

Nakamatsu, K.; Igaki, J.; Nagase, M.; Ichihashi, T.; Matsui, S. Mechanical characteristics of tungsten-containing carbon nanosprings grown by FIB-CVD. Microelectron. Eng. 2006, 83, 808-810.

217

Wu, X. -L.; Liu, Q.; Guo, Y. -G.; Song, W. -G. Superior storage performance of carbon nanosprings as anode materials for lithium-ion batteries. Electrochem. Commun. 2009, 11, 1468-1471.

218

Wang, L.; Li, C.; Gu, F.; Zhang, C. Facile flame synthesis and electrochemical properties of carbon nanocoils. J. Alloy. Compd. 2009, 473, 351-355.

219

Rakhi, R. B.; Cha, D.; Chen, W.; Alshareef, H. N. Electrochemical energy storage devices using electrodes incorporating carbon nanocoils and metal oxides nanoparticles. J. Phys. Chem. C 2011, 115, 14392-14399.

220

Ivanovskii, A. L. Non-carbon nanotubes: Synthesis and simulation. Russ. Chem. Rev. 2002, 71, 175-194.

221

Xiong, Y.; Mayers, B. T.; Xia, Y. Some recent developments in the chemical synthesis of inorganic nanotubes. Chem. Commun. 2005, 5013-5022.

222

Tenne, R. Inorganic nanotubes and fullerene-like nanoparticles. Nat. Nanotechnol. 2006, 1, 103-111.

223

Goldberger, J.; Fan, R.; Yang, P. Inorganic nanotubes: A novel platform for nanofluidics. Acc. Chem. Res. 2006, 39, 239-248.

224

Zeng, H.; Zhi, C.; Zhang, Z.; Wei, X.; Wang, X.; Guo, W.; Bando, Y.; Golberg, D. "White graphenes": Boron nitride nanoribbons via boron nitride nanotube unwrapping. Nano Lett. 2010, 10, 5049-5055.

225

Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147-150.

226

Lino, A. A.; Chacham, H. L.; Mazzoni, M. R. S. C. Edge states and half-metallicity in TiO2 nanoribbons. J. Phys. Chem. C 2011, 115, 18047-18050.

227

Zhang, H.; Li, X. -B.; Liu, L. -M. Tunable electronic and magnetic properties of WS2 nanoribbons. J. Appl. Phys. 2013, 114, 093710.

228

Biswas, S.; Kar, S.; Ghoshal, T.; Ashok, V. D.; Chakrabarti, S.; Chaudhuri, S. Fabrication of GaN nanowires and nanoribbons by a catalyst assisted vapor-liquid-solid process. Mater. Res. Bull. 2007, 42, 428-436.

229

Camacho-Bragado, G. A.; Jose-Yacaman, M. Self-assembly of molybdite nanoribbons. Appl. Phys. A 2006, 82, 19-22.

230

Cao, X. B.; Xie, Y.; Zhang, S. Y.; Li, F. Q. Ultra-thin trigonal selenium nanoribbons developed from series-wound beads. Adv. Mater. 2004, 16, 649-653.

231

Jin, C.; Lin, F.; Suenaga, K.; Iijima, S. Fabrication of a freestanding boron nitride single layer and its defect assignments. Phys. Rev. Lett. 2009, 102, 195505.

232

Zhi, C.; Bando, Y.; Tang, C.; Kuwahara, H.; Golberg, D. Large-scale fabrication of boron nitride nanosheets and their utilization in polymeric composites with improved thermal and mechanical properties. Adv. Mater. 2009, 21, 2889-2893.

233

Ataca, C.; Sahin, H.; Ciraci, S. Stable, single-layer MX2 transition-metal oxides and dichalcogenides in a honeycomb-like structure. J. Phys. Chem. C 2012, 116, 8983-8999.

234

Ma, Y.; Dai, Y.; Guo, M.; Niu, C.; Lu, J.; Huang, B. Electronic and magnetic properties of perfect, vacancy-doped, and nonmetal adsorbed MoSe2, MoTe2 and WS2 monolayers. Phys. Chem. Chem. Phys. 2011, 13, 15546-15553.

235

Lee, Y. -H.; Yu, L.; Wang, H.; Fang, W.; Ling, X.; Shi, Y.; Lin, C. -T.; Huang, J. -K.; Chang, M. -T.; Chang, C. -S. Synthesis and transfer of single-layer transition metal disulfides on diverse surfaces. Nano Lett. 2013, 13, 1852-1857.

236

Aufray, B.; Kara, A.; Vizzini, S.; Oughaddou, H.; Léandri, C.; Ealet, B.; Le Lay, G. Graphene-like silicon nanoribbons on Ag (110): A possible formation of silicene. Appl. Phys. Lett. 2010, 96, 183102.

237

De Padova, P.; Quaresima, C.; Ottaviani, C.; Sheverdyaeva, P. M.; Moras, P.; Carbone, C.; Topwal, D.; Olivieri, B.; Kara, A.; Oughaddou, H. Evidence of graphene-like electronic signature in silicene nanoribbons. Appl. Phys. Lett. 2010, 96, 261905.

238

Feng, B.; Ding, Z.; Meng, S.; Yao, Y.; He, X.; Cheng, P.; Chen, L.; Wu, K. Evidence of silicene in honeycomb structures of silicon on Ag (111). Nano Lett. 2012, 12, 3507-3511.

239

Gao, J.; Zhao, J. Initial geometries, interaction mechanism and high stability of silicene on Ag (111) surface. Sci. Rep. 2012, 2, 861-868.

240

Liu, H.; Gao, J.; Zhao, J. Silicene on substrates: A way to preserve or tune its electronic properties. J. Phys. Chem. C 2013, 117, 10353-10359.

241

Gao, J.; Zhang, J.; Liu, H.; Zhang, Q.; Zhao, J. Structures, mobilities, electronic and magnetic properties of point defects in silicene. Nanoscale 2013, 5, 9785-9792.

242

Wang, Z.; Su, N.; Liu, F. Prediction of a two-dimensional organic topological insulator. Nano Lett. 2013, 13, 2842-2845.

243

Liu, Z.; Wang, Z. -F.; Mei, J. -W.; Wu, Y. -S.; Liu, F. Flat Chern band in a two-dimensional organometallic framework. Phys. Rev. Lett. 2013, 110, 106804.

244

Wang, Z. F.; Liu, Z.; Liu, F. Quantum anomalous Hall effect in 2D organic topological insulators. Phys. Rev. Lett. 2013, 110, 196801.

245

Wang, Z. F.; Liu, Z.; Liu, F. Organic topological insulators in organometallic lattices. Nat. Commun. 2013, 4, 1471-1475.

246

Golberg, D.; Bando, Y.; Bourgeois, L.; Kurashima, K.; Sato, T. Insights into the structure of BN nanotubes. Appl. Phys. Lett. 2000, 77, 1979-1981.

247

Golberg, D.; Costa, P. M. F. J.; Lourie, O.; Mitome, M.; Bai, X.; Kurashima, K.; Zhi, C.; Tang, C.; Bando, Y. Direct force measurements and kinking under elastic deformation of individual multiwalled boron nitride nanotubes. Nano Lett. 2007, 7, 2146-2151.

248

Tian, B.; Xie, P.; Kempa, T. J.; Bell, D. C.; Lieber, C. M. Single-crystalline kinked semiconductor nanowire superstructures. Nat. Nanotechnol. 2009, 4, 824-829.

249

Su, L.; Xiaozhong, Z.; Lihuan, Z.; Min, G. Twinning-induced kinking of Sb-doped ZnO nanowires. Nanotechnology 2010, 21, 435602.

250

Pevzner, A.; Engel, Y.; Elnathan, R.; Tsukernik, A.; Barkay, Z.; Patolsky, F. Confinement-guided shaping of semiconductor nanowires and nanoribbons: "Writing with nanowires". Nano Lett. 2012, 12, 7-12.

251

Liu, B.; Bando, Y.; Liu, L.; Zhao, J.; Masanori, M.; Jiang, X.; Golberg, D. Solid-solution semiconductor nanowires in pseudobinary systems. Nano Lett. 2013, 13, 85-90.

252

Terauchi, M.; Tanaka, M.; Matsuda, H.; Takeda, M.; Kimura, K. Helical nanotubes of hexagonal boron nitride. J. Electron Microsc. 1997, 46, 75-78.

253

Gao, P. X.; Mai, W.; Wang, Z. L. Superelasticity and nanofracture mechanics of ZnO nanohelices. Nano Lett. 2006, 6, 2536-2543.

254

Jung, J. H.; Yoshida, K.; Shimizu, T. Creation of novel double-helical silica nanotubes using binary gel system. Langmuir 2002, 18, 8724-8727.

Publication history
Copyright
Acknowledgements

Publication history

Received: 26 November 2013
Revised: 15 February 2014
Accepted: 17 February 2014
Published: 26 April 2014
Issue date: May 2014

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014

Acknowledgements

Acknowledgements

This work was supported by the Program for Changjiang Scholars and Innovative Research Teams in University (PCSIRT) and Fundamental Research Funds for the Central Universities of China (No. DUT12YQ05). L. Liu is also thankful for the support through the Scholarship Award for Excellent Doctoral Student granted by the Ministry of Education of China and the support from China Scholarship Council (CSC). F. Liu acknowledges support from US DOEBES (grant no. DE-FG02-04ER46148) and NSF-MRSEC (grant no. DMR-1121252).

Return