Journal Home > Volume 7 , Issue 5

We present a facile method for producing superhydrophobic nanograss-coated (SNGC) glass surfaces that possess both reduced reflectivity and self-cleaning properties at the air/glass interface. The refractive index of a CaF2 nanograss (NG) layer on a glass substrate, deposited by glancing angle vapor deposition, is 1.04 at 500 nm, which is the second-lowest value ever reported so far. The fluorinated NG layer gives rise to a high water contact angle (> 150°) and very efficient cleaning out of dust with water drops. Using the dual functionalities of the SNGC glass, we demonstrate superhydrophobic and antireflective organic photovoltaic cells with excellent power conversion efficiency.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Superhydrophobic and antireflective nanograss-coated glass for high performance solar cells

Show Author's information Hyo Jin Gwon1,2Yensil Park3Cheon Woo Moon4Sahn Nahm2Seok-Jin Yoon1Soo Young Kim3( )Ho Won Jang4( )
Electronic Materials Research CenterKorea Institute of Science and TechnologySeoul136-791Korea
Department of Materials Science and Engineering, Korea UniversityKorea UniversitySeoul136-791Korea
School of Chemical Engineering and Materials ScienceChung-Ang UniversitySeoul156-756Korea
Department of Materials Science and EngineeringResearch Institute of Advanced MaterialsSeoul National UniversitySeoul151-744Korea

Abstract

We present a facile method for producing superhydrophobic nanograss-coated (SNGC) glass surfaces that possess both reduced reflectivity and self-cleaning properties at the air/glass interface. The refractive index of a CaF2 nanograss (NG) layer on a glass substrate, deposited by glancing angle vapor deposition, is 1.04 at 500 nm, which is the second-lowest value ever reported so far. The fluorinated NG layer gives rise to a high water contact angle (> 150°) and very efficient cleaning out of dust with water drops. Using the dual functionalities of the SNGC glass, we demonstrate superhydrophobic and antireflective organic photovoltaic cells with excellent power conversion efficiency.

Keywords: superhydrophobic, solar cells, antireflective, self-cleaning, nanograss, glancing angle deposition

References(39)

1

Ye, L.; Zhang, Y.; Zhang, X.; Hu, T.; Ji, R.; Ding, B.; Jiang, B. Sol–gel preparation of SiO2/TiO2/SiO2–TiO2 broadband antireflective coating for solar cell cover glass. Sol. Energy Mater. Sol. Cells 2013, 111, 160–164.

2

Raut, H. K.; Ganesh, V. A.; Nair, A. S.; Ramakrishna, S. Antireflective coatings: A critical, in-depth review. Energy. Environ. Sci. 2011, 4, 3779–3804.

3

Song, Y. M.; Yu, J. S.; Lee, Y. T. Antireflective submicrometer gratings on thin-film silicon solar cells for light-absorption enhancement. Opt. Lett. 2010, 35, 276–278.

4

Garnett, E.; Yang, P. Light trapping in silicon nanowire solar cells. Nano Lett. 2010, 10, 1082–1087.

5

Deubener, J.; Helsch, G.; Moiseev, A.; Bornhoft, H. Glasses for solar energy conversion systems. J. Eur. Ceram. Soc. 2009, 29, 1203–1210.

6

Li, X.; He, J.; Liu, W. Broadband antireflective and water-repellent coatings on glass substrates for self-cleaning photovoltaic cells. Mater. Res. Bull. 2013, 48, 2522–2528.

7

Verma, L. K.; Sakhuja, M.; Son, J.; Danner, A. J.; Yang, H.; Zeng, H. C.; Bhatia, C. S. Self-cleaning and antireflective packaging glass for solar modules. Renew. Energ. 2011, 36, 2489–2493.

8

Son, J.; Kundu, S.; Verma, L. K.; Sakhuja, M.; Danner, A. J.; Bhatia, C. S.; Yang, H. A practical superhydrophilic selfcleaning and antireflective surface for outdoor photovoltaic applications. Sol. Energy Mater. Sol. Cells 2012, 98, 46–51.

9

Hegazy, A. A. Effect of dust accumulation on solar transmittance through glass covers of plate-type collectors. Renew. Energ. 2001, 22, 525–540.

10

Li, F.; Li, Q.; Kim, H. Spray deposition of electrospun TiO2 nanoparticles with self-cleaning and transparent properties onto glass. Appl. Surf. Sci. 2013, 276, 390–396.

11

Song, Y.; Nair, R. P.; Zou, M.; Wang, Y. Superhydrophobic surfaces produced by applying a self-assembled monolayer to silicon micro/nano-textured surfaces. Nano. Res. 2009, 2, 143–150.

12

Park, Y. B.; Im, H.; lm, M.; Choi, Y. K. Self-cleaning effect of highly water-repellent microshell structures for solar cell applications. J. Mater. Chem. 2011, 21, 633–636.

13

Feng, X.; Jiang, L. Design and creation of superwetting/ antiwetting surfaces. Adv. Mater. 2006, 18, 3063–3078.

14

Zhang, X.; Shi, F.; Niu, J.; Jiang, Y. G.; Wang, Z. Q. Superhydrophobic surfaces: From structural control to functional application. J. Mater. Chem. 2008, 18, 621–633.

15

Lafuma, A.; Quere, D. Superhydrophobic states. Nat. Mater. 2003, 2, 457–460.

16

Bravo, J.; Zhai, L.; Wu, Z.; Cohen, R. E.; Rubner, M. F. Transparent superhydrophobic films based on silica nanoparticles. Langmuir 2007 23, 7293–7298.

17

Li, X.; Du X.; He, J. Self-cleaning antireflective coatings assembled from peculiar mesoporous silica nanoparticles. Langmuir 2010, 26, 13528–13534.

18

Lee, D.; Rubner, M. F.; Cohen, R. E. All nanoparticle thin-film coatings. Nano Lett. 2006, 6, 2305–2312.

19

Liu, Z.; Zhang, X.; Murakami, T.; Fujishima, A. Sol–gel SiO2/TiO2 bilayer films with self-cleaning and antireflection properties. Sol. Energy Mater. Sol. Cells 2008, 92, 1434–1438.

20

Ganbavle, V. V.; Bangi, U. K. H.; Latthe, S. S.; Mahadik, S. A.; Rao, A. V. Self-cleaning silica coatings on glass by single step sol–gel route. Surf. Coating Technol. 2011, 205, 5338–5344.

21

Mahadik, S. A.; Kavale, M. S.; Mukherjee, S. K.; Rao, A. V. Transparent superhydrophobic silica coatings on glass by sol–gel method. Appl. Surf. Sci. 2010, 257, 333–339.

22

Li, F.; Li, Q.; Kim, H. Spray deposition of electrospun TiO2 nanoparticles with self-cleaning and transparent properties onto glass. Appl. Surf. Sci. 2013, 276, 390–396.

23

Yabu, H.; Shimomura, M. Single-step fabrication of transparent superhydrophobic porous polymer films. Chem. Mater. 2005, 17, 5231–5234.

24

Vogelaar, L.; Lammertink, R. G. H.; Wessling, M. Superhydrophobic surfaces having two-fold adjustable roughness prepared in a single step. Langmuir 2006, 22, 3125–3130.

25

Verma, L. K.; Sakhuja, M.; Son, J.; Danner, A. J.; Yang, H.; Zeng, H. C.; Bhatia, C. S. Self-cleaning and antireflective packaging glass for solar modules. Renew. Energ. 2011, 36, 2489–2493.

26

Balu, B.; Breedveld, V.; Hess, D. W. Fabrication of "roll-off" and "sticky" superhydrophobic cellulose surfaces via plasma processing. Langmuir 2008, 24, 4785–4790

27

Li, Y.; Zhang, J.; Zhu, S.; Dong, H.; Jia, F.; Wang, Z.; Sun, Z.; Zhang, L.; Li, Y.; Li, H.; Xu, W.; Yang, B. Biomimetic surfaces for high-performance optics. Adv. Mater. 2009, 21, 4731–4731.

28

Wang, Y.; Lu, N.; Xu, H.; Shi1, G.; Xu, M.; Lin, X.; Li, H.; Wang, W.; Qi, D.; Lu, Y.; Chi, L. Biomimetic corrugated silicon nanocone arrays for self-cleaning antireflection coatings. Nano. Res. 2010, 3, 520–527.

29

Kennedy, S. R.; Brett, M. J. Porous broadband antireflection coating by glancing angle deposition. Appl. Opt. 2003, 42, 4573–4579.

30

Jensen, M. O.; Brett, M. J. Porosity engineering in glancing angle deposition thin films. Appl. Phys. A. 2005, 80, 763–768.

31

Grosso, D.; Boissiere, C.; Sanchez, C. Ultralow-dielectric-constant optical thin films built from magnesium oxyfluoride vesicle-like hollow nanoparticles. Nat. Mater. 2007, 6, 572–575.

32

Xi, J. Q.; Schubert, M. F.; Kim, J. K.; Schubert, E. F.; Chen, M.; Lin, S. Y.; Liu, W.; Smart, J. A. Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection. Nat. Photon. 2007, 1, 1176–179.

33

Walheim, S.; Schaffer, E.; Mlynek, J.; Steiner, U. Nanophase-separated polymer films as high-performance antireflection coatings. Science 1999, 283, 520–522.

34

Yang, Z. P.; Ci, L.; Bur, J. A.; Lin, S. Y. Ajayan, P. M. Experimental observation of an extremely dark material made by a low-density nanotube array. Nano Lett. 2008, 8, 446–451.

35

Yoldas, B. E.; Partlow, D. P. Wide spectrum antireflective coating for fused silica and other glasses. Appl. Opt. 1984, 23, 1418–1424.

36

Poxson, D. J.; Mont, F. W.; Schubert, M. F.; Kim, J. K.; Schubert, E. F. Quantification of porosity and deposition rate of nanoporous films grown by oblique-angle deposition. Appl. Phys. Lett. 2008, 93, 101914.

37

Sun, Y.; Qiao, R. Facile tuning of superhydrophobic states with Ag nanoplates. Nano. Res. 2008, 1, 1292–1302.

38

Baklanova, M. R.; Mogilnikov, K. P.; Polovinkin, V. G.; Dultsev, F. N. Determination of pore size distribution in thin films by ellipsometric porosimetry. J. Vac. Sci. Technol. B 2000, 18, 1385–1391.

39

Park, Y. S.; Suh, D. W.; Choi, K. S.; Yoo, J. S.; Ham, J. Y.; Lee, J. L.; Kim, S. Y. Enhanced efficiency of organic photovoltaic cells with Sr2SiO4: Eu2+ and SrGa2S4: Eu2+ phosphors. Org. Electron. 2013, 14, 1021–1026.

Video
nr-7-5-670_ESM_Movie 1_Normal glass.avi
nr-7-5-670_ESM_Movie 1_SNGC glass.avi
File
nr-7-5-670_ESM.pdf (955.6 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 21 October 2013
Revised: 28 January 2014
Accepted: 03 February 2014
Published: 14 May 2014
Issue date: May 2014

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014

Acknowledgements

Acknowledgements

This work was supported by the Korea Institute of Science and Technology. H. W. J. acknowledges the financial support of the Fusion Research Program for Green Technologies and the Outstanding Young Researcher Program through the National Research Foundation of Korea Grant, the Center for Integrated Smart Sensors funded by the Ministry of Science, ICT & Future Planning as the Global Frontier Project.

Return