AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Heating graphene to incandescence and the measurement of its work function by the thermionic emission method

Feng Zhu1,2,§Xiaoyang Lin1,2,§Peng Liu1,2( )Kaili Jiang1,2( )Yang Wei1,2Yang Wu1,2Jiaping Wang1,2Shoushan Fan1,2
State Key Laboratory of Low-Dimensional Quantum PhysicsDepartment of Physics and Tsinghua-Foxconn Nanotechnology Research CenterTsinghua UniversityBeijing100084China
Collaborative Innovation Center of Quantum MatterBeijing100084China

§The first two authors contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

The work function (WF) of graphene is an essential parameter in graphene electronics. We have derived the WF of graphene by the thermionic emission method. Chemical vapor deposition (CVD)-grown single-layered polycrystalline graphene on copper foil is transferred to a cross-stacked carbon nanotube (CNT) film drawn from a super-aligned multiwalled CNT array. By decreasing the pore size of the CNT film, the as-prepared CNT-graphene film (CGF) can be Joule heated to a temperature as high as 1,800 K in vacuum without obvious destruction in the graphene structure. By studying the thermionic emission, we derive the WF of graphene, ranging from 4.7 to 4.8 eV with the average value being 4.74 eV. Because the substrate influence can be minimized by virtue of the porous nature of the CNT film and the influence of adsorbents can be excluded due to the high temperature during the thermionic emission, the measured WF of graphene can be regarded as intrinsic.

Electronic Supplementary Material

Download File(s)
12274_2014_423_MOESM1_ESM.pdf (622.2 KB)

References

1

Bolotin, K. I.; Sikes, K. J.; Jiang, Z.; Klima, M.; Fudenberg, G.; Hone, J.; Kim, P.; Stormer, H. L. Ultrahigh electron mobility in suspended graphene. Solid State Commun. 2008, 146, 351–355.

2

Du, X.; Skachko, I.; Barker, A.; Andrei, E. Y. Approaching ballistic transport in suspended graphene. Nat. Nanotechnol. 2008, 3, 491–495.

3

Balandin, A. A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008, 8, 902–907.

4

Ghosh, S.; Calizo, I.; Teweldebrhan, D.; Pokatilov, E. P.; Nika, D. L.; Balandin, A. A.; Bao, W.; Miao, F.; Lau, C. N. Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits. Appl. Phys. Lett. 2008, 92, 151911.

5

Ghosh, S.; Nika, D. L.; Pokatilov, E. P.; Balandin, A. A. Heat conduction in graphene: Experimental study and theoretical interpretation. New J. Phys. 2009, 11, 095012.

6

Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.

7

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A. A. Two-dimensional gas of massless dirac fermions in graphene. Nature 2005, 438, 197–200.

8

Xia, F. N.; Farmer, D. B.; Lin, Y. -M.; Avouris, P. Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature. Nano Lett. 2010, 10, 715–718.

9

Schwierz, F. Graphene transistors. Nat. Nanotechnol. 2010, 5, 487–496.

10

Liu, M.; Yin, X.; Ulin-Avila, E.; Geng, B. S.; Zentgraf, T.; Ju, L.; Wang, F.; Zhang, X. A graphene-based broadband optical modulator. Nature 2011, 474, 64–67.

11

Bae, S.; Kim, H.; Lee, Y.; Xu, X. F.; Park, J. S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Kim, H. R.; Song, Y. I.; et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 2010, 5, 574–578.

12

Zhou, Y. H.; Fuentes-Hernandez, C.; Shim, J.; Meyer, J.; Giordano, A. J.; Li, H.; Winget, P.; Papadopoulos, T.; Cheun, H.; Kim, J.; et al. A universal method to produce low-work function electrodes for organic electronics. Science 2012, 336, 327–332.

13

Filleter, T.; Emtsev, K. V.; Seyller, T.; Bennewitz, R. Local work function measurements of epitaxial graphene. Appl. Phys. Lett. 2008, 93, 133117.

14

Yu, Y. -J.; Zhao, Y.; Ryu, S.; Brus, L. E.; Kim, K. S.; Kim, P. Tuning the graphene work function by electric field effect. Nano Lett. 2009, 9, 3430–3434.

15

Yan, L.; Punckt, C.; Aksay, I. A.; Mertin, W.; Bacher, G. Local voltage drop in a single functionalized graphene sheet characterized by Kelvin probe force microscopy. Nano Lett. 2011, 11, 3543–3549.

16

Wang, B.; Caffio, M.; Bromley, C.; Früchtl, H.; Schaub, R. Coupling epitaxy, chemical bonding, and work function at the local scale in transition metal-supported graphene. ACS Nano 2010, 4, 5773–5782.

17

Murata, Y.; Starodub, E.; Kappes, B. B.; Ciobanu, C. V.; Bartelt, N. C.; McCarty, K. F.; Kodambaka, S. Orientation-dependent work function of graphene on Pd(111). Appl. Phys. Lett. 2010, 97, 143114.

18

Siokou, A.; Ravani, F.; Karakalos, S.; Frank, O.; Kalbac, M.; Galiotis, C. Surface refinement and electronic properties of graphene layers grown on copper substrate: An XPS, UPS and EELS study. Appl. Surf. Sci. 2011, 257, 9785–9790.

19

Takahashi, T.; Tokailin, H.; Sagawa, T. Angle-resolved ultraviolet photoelectron spectroscopy of the unoccupied band structure of graphite. Phys. Rev. B 1985, 32, 8317–8324.

20

Oshim, C.; Nagashima, A. Ultra-thin epitaxial films of graphite and hexagonal boron nitride on solid surfaces. J. Phys. Condens. Matter 1997, 9, 1–20.

21

Chan, K. T.; Neaton, J. B.; Cohen, M. L. First-principles study of metal adatom adsorption on graphene. Phys. Rev. B 2008, 77, 235430.

22

Hicks, J.; Shepperd, K.; Wang, F.; Conrad, E. H. The structure of graphene grown on the SiC (0001) surface. J. Phys. D. Appl. Phys. 2012, 45, 154002.

23

Hicks, J.; Conrad, E. H. Graphene investigated by synchrotron radiation. MRS Bull. 2012, 37, 1203–1213.

24

Riedl, C.; Coletti, C.; Starke, U. Structural and electronic properties of epitaxial graphene on SiC(0 0 0 1): A review of growth, characterization, transfer doping and hydrogen intercalation. J. Phys. D. Appl. Phys. 2010, 43, 374009.

25

Ramprasad, R.; von Allmen, P.; Fonseca, L. R. C. Contributions to the work function: A density-functional study of adsorbates at graphene ribbon edges. Phys. Rev. B 1999, 60, 6023–6027.

26

Lin, X. Y.; Liu, P.; Wei, Y.; Li, Q. Q.; Wang, J. P.; Wu, Y.; Feng, C.; Zhang, L. N.; Fan, S. S.; Jiang, K. L. Development of an ultra-thin film comprised of a graphene membrane and carbon nanotube vein support. Nat. Commun. 2013, 4, 2920.

27

Wei, Y.; Jiang, K. L.; Feng, X. F.; Liu, P.; Liu, L.; Fan, S. S. Comparative studies of multiwalled carbon nanotube sheets before and after shrinking. Phys. Rev. B 2007, 76, 045423.

28

Li, X. S.; Cai, W. W.; An, J.; Kim, S.; Nah, J.; Yang, D.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312–1314.

29

Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S.; et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006, 97, 187401.

30

Jiang, K. L.; Li, Q. Q.; Fan, S. S. Spinning continuous carbon nanotube yarns. Nature 2002, 419, 801.

31

Xiao, L.; Chen, Z.; Feng, C.; Liu, L.; Bai, Z. -Q.; Wang, Y.; Qian, L.; Zhang, Y. Y.; Li, Q. Q.; Jiang, K. L.; et al. Flexible, stretchable, transparent carbon nanotube thin film loudspeakers. Nano Lett. 2008, 8, 4539–4545.

32

Liu, P.; Wei, Y.; Jiang, K. L.; Sun, Q.; Zhang, X. B.; Fan, S. S.; Zhang, S. F.; Ning, C. G.; Deng, J. K. Thermionic emission and work function of multiwalled carbon nanotube yarns. Phys. Rev. B 2006, 73, 235412.

33

Lee, Y.; Bae, S.; Jang, H.; Jang, S.; Zhu, S. -E.; Sim, S. H.; Song, Y. I.; Hong, B. H.; Ahn, J. -H. Wafer-scale synthesis and transfer of graphene films. Nano Lett. 2010, 10, 490–493.

34

Li, X. S.; Zhu, Y. W.; Cai, W. W.; Borysiak, M.; Han, B. Y.; Chen, D.; Piner, R. D.; Colombo, L.; Ruoff, R. S. Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Lett. 2009, 9, 4359–4363.

35

Li, C. Y.; Chou, T. -W. Axial and radial thermal expansions of single-walled carbon nanotubes. Phys. Rev. B 2005, 71, 235414.

36

Yoon, D.; Son, Y. -W.; Cheong, H. Negative thermal expansion coefficient of graphene measured by raman spectroscopy. Nano Lett. 2011, 11, 3227–3231.

37

Jiang, H.; Hwang, K. C.; Liu, B.; Huang, Y. Thermal expansion of single wall carbon nanotubes. J. Eng. Mater-Trans. ASME 2004, 126, 265–270.

38

Jiang, J. -W.; Wang, J. -S.; Li, B. W. Thermal expansion in single-walled carbon nanotubes and graphene: Nonequilibrium green's function approach. Phys. Rev. B 2009, 80, 205429.

39

Singh, V.; Sengupta, S.; Solanki, H. S.; Dhall, R.; Allain, A.; Dhara, S.; Pant, P.; Deshmukh, M. M. Probing thermal expansion of graphene and modal dispersion at low-temperature using graphene nanoelectromechanical systems resonators. Nanotechnology 2010, 21, 165204.

40

Reimann, A. L. Thermionic Emission. Chapman & Hall, Ltd. : London, 1934.

41

Richardson, O. W. The Emission of Electricity from Hot Bodies. Longmans, Green and Co.: London, New York etc., 1921.

42

Liu, P.; Sun, Q.; Zhu, F.; Liu, K.; Jiang, K. L.; Liu, L.; Li, Q. Q.; Fan, S. S. Measuring the work function of carbon nanotubes with thermionic method. Nano Lett. 2008, 8, 647–651.

43
Taylor, B. N.; Kuyatt, C. E. Guidelines for evaluating and expressing the uncertainty of NIST measurement results. NIST Techenical Note 1297, 1994 Edition. http://physics.nist.gov/Pubs/guidelines/TN1297/tn1297s.pdf. (Accessed on November 3, 2013)https://doi.org/10.6028/NIST.TN.1297
44

Das, A.; Pisana, S.; Chakraborty, B.; Piscanec, S.; Saha, S. K.; Waghmare, U. V.; Novoselov, K. S.; Krishnamurthy, H. R.; Geim, A. K.; Ferrari, A. C.; et al. Monitoring dopants by raman scattering in an electrochemically top-gated graphene transistor. Nat. Nanotechnol. 2008, 3, 210–215.

45

Choi, S. M.; Jhi, S. H.; Son, Y. W. Effects of strain on electronic properties of graphene. Phys. Rev. B 2010, 81, 081407.

46

Sun, J. K.; Li, Y. H.; Peng, Q. Y.; Hou, S. C.; Zou, D. C.; Shang, Y. Y.; Li, Y. B.; Li, P. X.; Du, Q. J.; Wang, Z. H.; et al. Macroscopic, flexible, high-performance graphene ribbons. ACS Nano 2013, 7, 10225–10232.

47

Lin, Q. -Y.; Jing, G. Y.; Zhou, Y. -B.; Wang, Y. -F.; Meng, J.; Bie, Y. -Q.; Yu, D. -P.; Liao, Z. -M. Stretch-induced stiffness enhancement of graphene grown by chemical vapor deposition. ACS Nano 2013, 7, 1171–1177.

Nano Research
Pages 553-560
Cite this article:
Zhu F, Lin X, Liu P, et al. Heating graphene to incandescence and the measurement of its work function by the thermionic emission method. Nano Research, 2014, 7(4): 553-560. https://doi.org/10.1007/s12274-014-0423-1

647

Views

52

Crossref

N/A

Web of Science

52

Scopus

4

CSCD

Altmetrics

Received: 03 November 2013
Revised: 14 January 2014
Accepted: 20 January 2014
Published: 01 April 2014
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014
Return