Journal Home > Volume 7 , Issue 4

Hexagonal and triangular monodisperse Fe3O4 nanosheets have been synthesized via a two-step microemulsion solvothermal approach in which uniform Fe3O4 nanoparticles are first prepared and then these hydrophobic nanocrystals are dispersed in a uniform microemulsion environment as "seeds" for further re-growth through a secondary solvothermal process. The growth of anisotropic morphologies has been explained by the presence and orientation of twin planes in the face-centered cubic Fe3O4 which direct the shape of the growing particles. In particular, reentrant grooves resulting from twin planes are favorable sites for the addition of adatoms, leading to anisotropic growth. Triangular nanosheets are believed to contain one twin face which directs the growth of the primary particles in two dimensions. Hexagonal nanosheets are believed to contain two parallel planes that allow the growth edges to regenerate one another. The growth mechanism is evidenced by the analysis of high-resolution transmission electron microscopy (HRTEM) results and the as-prepared Fe3O4 nanoparticles have been shown to be an effective catalyst in the synthesis of quinoxaline.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Synthesis of hexagonal and triangular Fe3O4 nanosheets via seed-mediated solvothermal growth

Show Author's information Chunhui Li( )Ruixue WeiYanmin XuAiling SunLiuhe Wei( )
College of Chemistry and Molecular EngineeringZhengzhou Key Laboratory of Elastic Sealing MaterialsZhengzhou UniversityZhengzhou450001China

Abstract

Hexagonal and triangular monodisperse Fe3O4 nanosheets have been synthesized via a two-step microemulsion solvothermal approach in which uniform Fe3O4 nanoparticles are first prepared and then these hydrophobic nanocrystals are dispersed in a uniform microemulsion environment as "seeds" for further re-growth through a secondary solvothermal process. The growth of anisotropic morphologies has been explained by the presence and orientation of twin planes in the face-centered cubic Fe3O4 which direct the shape of the growing particles. In particular, reentrant grooves resulting from twin planes are favorable sites for the addition of adatoms, leading to anisotropic growth. Triangular nanosheets are believed to contain one twin face which directs the growth of the primary particles in two dimensions. Hexagonal nanosheets are believed to contain two parallel planes that allow the growth edges to regenerate one another. The growth mechanism is evidenced by the analysis of high-resolution transmission electron microscopy (HRTEM) results and the as-prepared Fe3O4 nanoparticles have been shown to be an effective catalyst in the synthesis of quinoxaline.

Keywords: solvothermal synthesis, anisotropic growth, Fe3O4 nanocrystal, twin plane

References(30)

1

Wu, B. H.; Zhang, H.; Chen, C.; Lin, S. C.; Zheng, N. F. Interfacial activation of catalytically inert Au (6.7 nm)-Fe3O4 dumbbell nanoparticles for CO oxidation. Nano Res. 2009, 2, 975–983.

2

Parella, R.; Naveen; Babu, S. A. Magnetic nano-Fe3O4 and CuFe2O4 as heterogeneous catalysts: A green method for the stereo- and regio-selective reactions of epoxides with indoles/pyrroles. Catal. Commun. 2012, 29, 118–121.

3

Zhou, J.; Gan, N.; Li, T. H.; Zhou, H. K.; Li, X.; Cao, Y. T.; Wang, L. H.; Sang, W. G.; Hu, F. T. Ultratrace detection of C-reactive protein by a piezoelectric immunosensor based on Fe3O4@SiO2 magnetic capture nanoprobes and HRP-antibody co-immobilized gold as signal tags. Sensor. Actuat. B 2013, 178, 494–500.

4

Shi, F.; Tse, M. K.; Zhou, S. L.; Pohl, M. M.; Radnik, J.; Hubner, S.; Jahnisch, K.; Bruckner, A.; Beller, M. Green and efficient synthesis of sulfonamides catalyzed by nano-Ru/Fe3O4. J. Am. Chem. Soc. 2009, 131, 1775–1779.

5

Wang, D. S.; Xie, T.; Li, Y. D. Nanocrystals: solution-based synthesis and applications as nanocatalysts. Nano Res. 2009, 2, 30–46.

6

Gawande, M. B.; Branco, P. S.; Varma, R. S. Nano-magnetic (Fe3O4) as a support for recycled catalyst in the development of sustainable methodologies. Chem. Soc. Rev. 2013, 42, 3371–3393.

7

Gao, F. P.; Cai, Y. Y.; Zhou, J.; Xie, X. X.; Ouyang, W. W.; Zhang, Y. H.; Wang, X. F.; Zhang, X. D.; Wang, X. W.; Zhao, L. Y.; et al. Pullulan acetate coated magnetite nanoparticles for hyperthermia: Preparation, characterization and in vitro experiments. Nano Res. 2010, 3, 23–31.

8

Li, X. Y.; Si, Z. J.; Lei, Y. Q.; Tang, J. K.; Wang, S.; Su, S. Q.; Song, S. Y.; Zhao, L. J.; Zhang, H. J. Direct hydrothermal synthesis of single-crystalline triangular Fe3O4 nanoprisms. CrystEngComm 2010, 12, 2060–2063.

9

Tan, H.; Xue, J. M.; Shuter, B.; Li, X.; Wang, J. Synthesis of PEOlated Fe3O4@SiO2 nanoparticles via bioinspired silification for magnetic resonance imaging. Adv. Funct. Mater. 2010, 20, 722–731.

10

Meng, L. R.; Chen, M. M.; Chen, W. M.; Tan, Y. W.; Zou, L.; Chen, C. P.; Zhou, H. P.; Peng, Q.; Li, Y. D. Fe3O4 octahedral colloidal crystals. Nano Res. 2011, 4, 370–375.

11

Liang, X.; Wang, X.; Zhuang, J.; Chen, Y. T.; Wang, D. S.; Li, Y. D. Synthesis of nearly monodisperse iron oxide and oxyhydroxide nanocrystals. Adv. Funct. Mater. 2006, 16, 1805–1813.

12

Deng, H.; Li, X. L.; Peng, Q.; Wang, X.; Chen, J. P.; Li, Y. D. Monodisperse magnetic single-crystal ferrite microspheres. Angew. Chem. Int. Ed. 2005, 44, 2782–2785.

13

Lin, F. H.; Chen, W.; Liao, Y. H.; Doong, R.; Li, Y. D. Effective approach for the synthesis of monodisperse magnetic nanocrystals and M-Fe3O4 (M = Ag, Au, Pt, Pd) heterostructures. Nano Res. 2011, 4, 1223–1232.

14

Zhou, K. B.; Wang, X.; Sun, X. M.; Peng, Q.; Li, Y. D. Enhanced catalytic activity of ceria nanorods from well-defined reactive crystal planes. J. Catal. 2005, 229, 206–212.

15

Zhou, K. B.; Li, Y. D. Catalysis based on nanocrystals with well-defined facets. Angew. Chem. Int. Ed. 2012, 51, 602–613.

16

Jing, Y.; He, S. H.; Wang, J. P. Magnetic nanoparticles of core-shell structure for recoverable photocatalysts. Appl. Phys. Lett. 2013, 102, 253102.

17

Lin, S. X.; Shen, C. M.; Lu, D. B.; Wang, C. M.; Gao, H. J. Synthesis of Pt nanoparticles anchored on grapheme-encapsulated Fe3O4 magnetic nanospheres and their use as catalysts for methanol oxidation. Carbon 2013, 53, 112–119.

18

Wang, D. S.; Zhao, P.; Li, Y. D. General preparation for Pt-based alloy nanoporous nanoparticles as potential nanocrystals. Sci. Rep. 2011, 1, 37.

19

Shao, M. F.; Wei, M.; Evans, D. G.; Duan, X. Hierarchical structure based on functionalized magnetic cores and layered doubled-hydroxide shells: Concept, controlled synthesis, and applications. Chem. Eur. J. 2013, 19, 4100–4108.

20

Xing, R. J.; Bhirde, A. A.; Wang, S. J.; Sun, X. L.; Liu, G.; Hou, Y. L.; Chen, X. Y. Hollow iron oxide nanoparticles as multidrug resistant drug and imaging vehicles. Nano Res. 2013, 6, 1–9.

21

Ge, J. P.; Xu, S.; Liu, L. P.; Li, Y. D. A positive-microemulsion method for preparing nearly uniform Ag2Se nanoparticles at low temperature. Chem. Eur. J. 2006, 12, 3672–3677.

22

Wang, X.; Zhuang, J.; Peng, Q.; Li, Y. D. A general strategy for nanocrystal synthesis. Nature 2005, 437, 121–124.

23

Zhang, J. T.; Tang, Y.; Weng, L.; Ouyang, M. Versatile strategy for preciously tailored core@shell nanostructures with single shell layer accuracy: The case of metallic shell. Nano Lett. 2009, 9, 4061–4065.

24

Li, C. H.; Peng, Q.; Li, Y. D. Controlled synthesis of nearly monodispersed Mn2(PO4)Cl nanocrystals and nanorods. Cryst. Growth Des. 2008, 8, 242–246.

25

Liu, R. Z.; Zhao, Y. Z.; Huang, R. X.; Zhao, Y. J.; Zhou, H. P. Shape evolution and tunable properties of monodisperse magnetite crystals synthesized by a facile surfactant-free hydrothermal method. Eur. J. Inorg. Chem. 2010, 4499–4505.

26

Liu, J. F.; Wang, L. L.; Sun, X. M.; Zhu, X. Q. Cerium vanadate nanorod arrays from ionic-mediated self-assembly. Angew. Chem. Int. Ed. 2010, 49, 3492–3495.

27

Berriman, R. W.; Herz, R. H. Twinning and the tabular growth of silver bromide crystals. Nature 1957, 180, 293–294.

28

Hamilton, D. R.; Seidensticker, R. G. Propagation mechanism of germanium dendrites. J. Appl. Phys. 1960, 31, 1165–1171.

29

Hamilton, J. F.; Brady, L. E. Twinning and growth of silver bromide microcrystals. J. Appl. Phys. 1964, 35, 414–422.

30

Lofton, C.; Sigmund, W. Mechanisms controlling crystal habits of gold and silver colloids. Adv. Funct. Mater. 2005, 15, 1197–1208.

File
12274_2014_421_MOESM1_ESM.pdf (678.3 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 28 November 2013
Revised: 18 January 2014
Accepted: 19 January 2014
Published: 01 April 2014
Issue date: April 2014

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 20901069, 50873093, and 21271156) and the Henan Province Scientific and Technological Research Program (No. 092102210054).

Return