Journal Home > Volume 7 , Issue 5

Europium-doped gadolinium oxide (Gd2O3: Eu) nanoparticles have been synthesized, and then their surfaces have been conjugated with nucleolintargeted AS1411 aptamer to form functionalized target-specific Gd2O3: Eu nanoparticles (A-GdO: Eu nanoparticles). The A-GdO: Eu nanoparticles present strong fluorescence in the visible range, high magnetic susceptibility, X-ray attenuation and good biocompatibility. The A-GdO: Eu nanoparticles have been applied to test molecular expression of nucleolin highly expressed CL1-5 lung cancer cells under a confocal microscope. Fluorescence imaging clearly reveals that the nanoparticles can be applied as fluorescent tags for cancer-targeting molecular imaging. Furthermore, taking together their excellent T1 contrast and strong computed tomography (CT) signal, the A-GdO: Eu nanoparticles demonstrate a great capability for use as a dual modality contrast agent for CT and magnetic resonance (MR) molecular imaging. Animal experiments also show that the A-GdO: Eu nanoparticles are able to contrast the tissues of BALB/c mice using CT modality. Moreover, the obvious red fluorescence of A-GdO: Eu nanoparticles can be visualized in a tumor by the naked eye. Overall, our results demonstrate that the A-GdO: Eu nanoparticles can not only serve as new medical contrast agents but also as intraoperative fluorescence imaging probes for guided surgery in the near future.


menu
Abstract
Full text
Outline
About this article

AS1411 aptamer-conjugated Gd2O3: Eu nanoparticles for target-specific computed tomography/magnetic resonance/fluorescence molecular imaging

Show Author's information Tsungrong Kuo1,2Weiyun Lai3,4Chenghung Li1Yanjhan Wun1Huancheng Chang2Jinnshiun Chen5Panchyr Yang6Chiachun Chen1,2( )
Department of Chemistry"National Taiwan Normal University", Taipei 116TaiwanChina
Institute of Atomic and Molecular Science"Academia Sinica", Taipei, 106TaiwanChina
Molecular Medicine ProgramTaiwan International Graduate ProgramInstitute of Biomedical Sciences"Academia Sinica", Taipei, 115TaiwanChina
Institute of Biochemistry and Molecular BiologySchool of Life Sciences"National Yang-Ming University", Taipei, 112TaiwanChina
Division of Colorectal SurgeryChang Gung Memorial HospitalChang Gung University, Taoyuan, 333TaiwanChina
College of Medicine"National Taiwan University", Taipei, 106TaiwanChina

Abstract

Europium-doped gadolinium oxide (Gd2O3: Eu) nanoparticles have been synthesized, and then their surfaces have been conjugated with nucleolintargeted AS1411 aptamer to form functionalized target-specific Gd2O3: Eu nanoparticles (A-GdO: Eu nanoparticles). The A-GdO: Eu nanoparticles present strong fluorescence in the visible range, high magnetic susceptibility, X-ray attenuation and good biocompatibility. The A-GdO: Eu nanoparticles have been applied to test molecular expression of nucleolin highly expressed CL1-5 lung cancer cells under a confocal microscope. Fluorescence imaging clearly reveals that the nanoparticles can be applied as fluorescent tags for cancer-targeting molecular imaging. Furthermore, taking together their excellent T1 contrast and strong computed tomography (CT) signal, the A-GdO: Eu nanoparticles demonstrate a great capability for use as a dual modality contrast agent for CT and magnetic resonance (MR) molecular imaging. Animal experiments also show that the A-GdO: Eu nanoparticles are able to contrast the tissues of BALB/c mice using CT modality. Moreover, the obvious red fluorescence of A-GdO: Eu nanoparticles can be visualized in a tumor by the naked eye. Overall, our results demonstrate that the A-GdO: Eu nanoparticles can not only serve as new medical contrast agents but also as intraoperative fluorescence imaging probes for guided surgery in the near future.

Keywords: aptamer, contrast agent, molecular imaging, Gd2O3 nanoparticles, nanoparticles synthesis

References(57)

1

Seo, W. S.; Lee, J. H.; Sun, X. M.; Suzuki, Y.; Mann, D.; Liu, Z.; Terashima, M.; Yang, P. C.; McConnell, M. V.; Nishimura, D. G.; Yang, P. C. et al. FeCo/graphitic-shell nanocrystals as advanced magnetic-resonance-imaging and near-infrared agents. Nat. Mater. 2006, 5, 971-976.

2

Jun, Y. W.; Lee, J. H.; Cheon, J. Chemical design of nanoparticle probes for high-performance magnetic resonance imaging. Angew. Chem. Int. Ed. 2008, 47, 5122-5135.

3

Hahn, M. A.; Singh, A. K.; Sharma, P.; Brown, S. C.; Moudgil, B. M. Nanoparticles as contrast agents for in-vivo bioimaging: Current status and future perspectives. Anal. Bioanal. Chem. 2011, 399, 3-27.

4

Lim, E. K.; Huh, Y. M.; Yang, J.; Lee, K.; Suh, J. S.; Haam, S. pH-Triggered drug-releasing magnetic nanoparticles for cancer therapy guided by molecular imaging by MRI. Adv. Mater. 2011, 23, 2436-2442.

5

Xing, H. Y.; Bu, W. B.; Zhang, S. J.; Zheng, X. P.; Li, M.; Chen, F.; He, Q. J.; Zhou, L. P.; Peng, W. J.; Hua, Y. Q. Multifunctional nanoprobes for upconversion fluorescence, MR and CT trimodal imaging. Biomaterials 2012, 33, 1079-1089.

6

Hyafil, F.; Cornily, J. C.; Feig, J. E.; Gordon, R.; Vucic, E.; Amirbekian, V.; Fisher, E. A.; Fuster, V.; Feldman, L. J.; Fayad, Z. A. Noninvasive detection of macrophages using a nanoparticulate contrast agent for computed tomography. Nat. Med. 2007, 13, 636-641.

7

Baker, M. Whole-animal imaging: The whole picture. Nature 2010, 463, 977-980.

8

Na, H. B.; Hyeon, T. Nanostructured T1 MRI contrast agents. J. Mater. Chem. 2009, 19, 6267-6273.

9

Kumar, R.; Roy, I.; Ohulchanskky, T. Y.; Vathy, L. A.; Bergey, E. J.; Sajjad, M.; Prasad, P. N. In vivo biodistribution and clearance studies using multimodal organically modified silica nanoparticles. ACS Nano 2010, 4, 699-708.

10

Lee, Y. C.; Chen, D. Y.; Dodd, S. J.; Bouraoud, N.; Koretsky, A. P.; Krishnan, K. M. The use of silica coated MnO nanoparticles to control MRI relaxivity in response to specific physiological changes. Biomaterials 2012, 33, 3560-3567.

11

Gao, J. H.; Liang, G. L.; Cheung, J. S.; Pan, Y.; Kuang, Y.; Zhao, F.; Zhang, B.; Zhang, X. X.; Wu, E. X.; Xu, B. Multifunctional yolk-shell nanoparticles: A potential MRI contrast and anticancer agent. J. Am. Chem. Soc. 2008, 130, 11828-11833.

12

Wang, Y. C.; Liu, Y. J.; Luehmann, H.; Xia, X. H.; Brown, P.; Jarreau, C.; Welch, M.; Xia, Y. N. Evaluating the pharmacokinetics and in vivo cancer targeting capability of Au nanocages by positron emission tomography imaging. ACS Nano 2012, 6, 5880-5888.

13

Huang, C. C.; Tsai, C. Y.; Sheu, H. S.; Chuang, K. Y.; Su, C. H.; Jeng, U. S.; Cheng, F. Y.; Lei, H. Y.; Yeh, C. S. Enhancing transversal relaxation for magnetite nanoparticles in MR imaging using Gd3+ chelated mesoporous silica shells. ACS Nano 2011, 5, 3905-3916.

14

Xiong, L. Q.; Yang, T. S.; Yang, Y.; Xu, C. J.; Li, F. Y. Long-term in vivo biodistribution imaging and toxicity of polyacrylic acid-coated upconversion nanophosphors. Biomaterials 2010, 31, 7078-7085.

15

Jiang, S.; Gnanasammandhan, M. K.; Zhang, Y. Optical imaging-guided cancer therapy with fluorescent nanoparticles. J. R. Soc. Interface 2010, 7, 3-18.

16

Alric, C.; Taleb, J.; Le Duc, G.; Mandon, C.; Billotey, C.; Le Meur-Herland, A.; Brochard, T.; Vocanson, F.; Janier, M.; Perriat, P.; Roux, S. et al. Gadolinium chelate coated gold nanoparticles as contrast agents for both X-ray computed tomography and magnetic resonance imaging. J. Am. Chem. Soc. 2008, 130, 5908-5915.

17

Xie, J.; Chen, K.; Huang, J.; Lee, S.; Wang, J. H.; Gao, J. H.; Li, X. G.; Chen, X. Y. PET/NIRF/MRI triple functional iron oxide nanoparticles. Biomaterials 2010, 31, 3016-3022.

18

Hagit, A.; Soenke, B.; Johannes, B.; Shlomo, M. Synthesis and characterization of dual modality (CT/MRI) core-shell microparticles for embolization purposes. Biomacromolecules 2010, 11, 1600-1607.

19

Kim, D.; Yu, M. K.; Lee, T. S.; Park, J. J.; Jeong, Y. Y.; Jon, S. Amphiphilic polymer-coated hybrid nanoparticles as CT/MRI dual contrast agents. Nanotechnology 2011, 22, 155101.

20

Narayanan, S.; Sathy, B. N.; Mony, U.; Koyakutty, M.; Nair, S. V.; Menon, D. Biocompatible magnetite/gold nanohybrid contrast agents via green chemistry for MRI and CT bioimaging. ACS Appl. Mater. Interfaces 2012, 4, 251-260.

21

Chou, S. W.; Shau, Y. H.; Wu, P. C.; Yang, Y. S.; Shieh, D. B.; Chen, C. C. In vitro and in vivo studies of FePt nanoparticles for dual modal CT/MRI molecular imaging. J. Am. Chem. Soc. 2010, 132, 13270-13278.

22

Lee, N.; Cho, H. R.; Oh, M. H.; Lee, S. H.; Kim, K.; Kim, B. H.; Shin, K.; Ahn, T. Y.; Choi, J. W.; Kim, Y. W. et al. Multifunctional Fe3O4/TaOx core/shell nanoparticles for simultaneous magnetic resonance imaging and X-ray computed tomography. J. Am. Chem. Soc. 2012, 134, 10309-10312.

23

de Rosales, R. T. M.; Tavaré, R.; Paul, R. L.; Jauregui-Osoro, M.; Protti, A.; Glaria, A.; Varma, G.; Szanda, I.; Blower, P. J. Synthesis of 64Cu-bis(dithiocarbamatebisphosphonate) and its conjugation with superparamagnetic iron oxide nanoparticles: In vivo evaluation as dual-modality PET-MRI agent. Angew. Chem. Int. Ed. 2011, 50, 5509-5513.

24

Devaraj, N. K.; Keliher, E. J.; Thurber, G. M.; Nahrendorf, M.; Weissleder, R. 18F labeled nanoparticles for in vivo PET-CT imaging. Bioconjug. Chem. 2009, 20, 397-401.

25

Betzig, E.; Patterson, G. H.; Sougrat, R.; Lindwasser, O. W.; Olenych, S.; Bonifacino, J. S.; Davidson, M. W.; Lippincott-Schwartz, J.; Hess, H. F. Imaging intracellular fluorescent proteins at nanometer resolution. Science 2006, 313, 1642-1645.

26

Zhu, L. Y.; Wu, W. W.; Zhu, M. Q.; Han, J. J.; Hurst, J. K.; Li, A. D. Q. Reversibly photoswitchable dual-color fluorescent nanoparticles as new tools for live-cell imaging. J. Am. Chem. Soc. 2007, 129, 3524-3526.

27

Keereweer, S.; Kerrebijn, J. D. F.; van Driel, P.; Xie, B. W.; Kaijzel, E. L.; Snoeks, T. J. A.; Que, I.; Hutteman, M.; van der Vorst, J. R.; Mieog, J. S. D. et al. Optical image-guided surgery—where do we stand? Mol. Imaging Biol. 2011, 13, 199-207.

28

Whitney, M. A.; Crisp, J. L.; Nguyen, L. T.; Friedman, B.; Gross, L. A.; Steinbach, P.; Tsien, R. Y.; Nguyen, Q. T. Fluorescent peptides highlight peripheral nerves during surgery in mice. Nat. Biotechnol. 2011, 29, 352-356.

29

Alivisatos, A. P. Semiconductor clusters, nanocrystals, and quantum dots. Science 1996, 271, 933-937.

30

Lin, C. A. J.; Yang, T. Y.; Lee, C. H.; Huang, S. H.; Sperling, R. A.; Zanella, M.; Li, J. K.; Shen, J. L.; Wang, H. H.; Yeh, H. I. et al. Synthesis, characterization, and bioconjugation of fluorescent gold nanoclusters toward biological labeling applications. ACS Nano 2009, 3, 395-401.

31

Orndorff, R. L.; Rosenthal, S. J. Neurotoxin quantum dot conjugates detect endogenous targets expressed in live cancer cells. Nano Lett. 2009, 9, 2589-2599.

32

Kobayashi, H.; Hama, Y.; Koyama, Y.; Barrett, T.; Regino, C. A. S.; Urano, Y.; Choyke, P. L. Simultaneous multicolor imaging of five different lymphatic basins using quantum dots. Nano Lett. 2007, 7, 1711-1716.

33

He, H.; Xie, C.; Ren, J. C. Nonbleaching fluorescence of gold nanoparticles and its applications in cancer cell imaging. Anal. Chem. 2008, 80, 5951-5957.

34

Mohan, N.; Chen, C. S.; Hsieh, H. H.; Wu, Y. C.; Chang, H. C. In vivo imaging and toxicity assessments of fluorescent nanodiamonds in caenorhabditis elegans. Nano Lett. 2010, 10, 3692-3699.

35

Hilderbrand, S. A.; Shao, F. W.; Salthouse, C.; Mahmood, U.; Weissleder, R. Upconverting luminescent nanomaterials: Application to in vivo bioimaging. Chem. Commun. 2009, 4188-4190.

36

Beaurepaire, E.; Buissette, V.; Sauviat, M. P.; Giaume, D.; Lahlil, K.; Mercuri, A.; Casanova, D.; Huignard, A.; Martin, J. L.; Gacoin, T. et al. Functionalized fluorescent oxide nanoparticles: Artificial toxins for sodium channel targeting and imaging at the single-molecule level. Nano Lett. 2004, 4, 2079-2083.

37

Lee, H.; Yu, M. K.; Park, S.; Moon, S.; Min, J. J.; Jeong, Y. Y.; Kang, H. W.; Jon, S. Thermally cross-linked superparamagnetic iron oxide nanoparticles: Synthesis and application as a dual imaging probe for cancer in vivo. J. Am. Chem. Soc. 2007, 129, 12739-12745.

38

Yu, M. K.; Jeong, Y. Y.; Park, J.; Park, S.; Kim, J. W.; Min, J. J.; Kim, K.; Jon, S. Drug-loaded superparamagnetic iron oxide nanoparticles for combined cancer imaging and therapy in vivo. Angew. Chem. Int. Ed. 2008, 47, 5362-5365.

39

Wang, K.; Ruan, J.; Qian, Q. R.; Song, H.; Bao, C. C.; Zhang, X. Q.; Kong, Y. F.; Zhang, C. L.; Hu, G. H.; Ni, J. et al. BRCAA1 monoclonal antibody conjugated fluorescent magnetic nanoparticles for in vivo targeted magnetofluorescent imaging of gastric cancer. J. Nanobiotechnology 2011, 9, 23.

40

Oh, M. H.; Lee, N.; Kim, H.; Park, S. P.; Piao, Y.; Lee, J.; Jun, S. W.; Moon, W. K.; Choi, S. H.; Hyeon, T. Large-scale synthesis of bioinert tantalum oxide nanoparticles for X-ray computed tomography imaging and bimodal image-guided sentinel lymph node mapping. J. Am. Chem. Soc. 2011, 133, 5508-5515.

41

Cai, W. B.; Chen, X. Y. Preparation of peptide-conjugated quantum dots for tumor vasculature-targeted imaging. Nat. Protoc. 2008, 3, 89-96.

42

Park, S.; Hamad-Schifferli, K. Enhancement of in vitro translation by gold nanoparticle-DNA conjugates. ACS Nano 2010, 4, 2555-2560.

43

Xiao, Z. Y.; Farokhzad, O. C. Aptamer-functionalized nanoparticles for medical applications: Challenges and opportunities. ACS Nano 2012, 6, 3670-3676.

44

Kim, D.; Jeong, Y. Y.; Jon, S. A drug-loaded aptamer-gold nanoparticle bioconjugate for combined CT imaging and therapy of prostate cancer. ACS Nano 2010, 4, 3689-3696.

45

Gao, H. L.; Qian, J.; Cao, S. J.; Yang, Z.; Pang, Z. Q.; Pan, S. Q.; Fan, L.; Xi, Z. J. et al. Precise glioma targeting of and penetration by aptamer and peptide dual-functioned nanoparticles. Biomaterials 2012, 33, 5115-5123.

46

Hwang, D. W.; Ko, H. Y.; Lee, J. H.; Kang, H.; Ryu, S. H.; Song, I. C.; Lee, D. S.; Kim, S. A nucleolin-targeted multimodal nanoparticle imaging probe for tracking cancer cells using an aptamer. J. Nucl. Med. 2010, 51, 98-105.

47

Bridot, J. L.; Faure, A. C.; Laurent, S.; Rivière, C.; Billotey, C.; Hiba, B.; Janier, M.; Josserand, V.; Coll, J. L.; Elst, V. L. et al. Hybrid gadolinium oxide nanoparticles: Multimodal contrast agents for in vivo imaging. J. Am. Chem. Soc. 2007, 129, 5076-5084.

48

Kryza, D.; Taleb, J.; Janier, M.; Marmuse, L.; Miladi, I.; Bonazza, P.; Louis, C.; Perriat, P.; Roux, S.; Tillement, O. et al. Biodistribution study of nanometric hybrid gadolinium oxide particles as a multimodal SPECT/MR/optical imaging and theragnostic agent. Bioconjug. Chem. 2011, 22, 1145-1152.

49

Zhou, L. J.; Gu, Z. J.; Liu, X. X.; Yin, W. Y.; Tian, G.; Yan, L.; Jin, S.; Ren, W. L.; Xing, G. M.; Li, W. et al. Size-tunable synthesis of lanthanide-doped Gd2O3 nanoparticles and their applications for optical and magnetic resonance imaging. J. Mater. Chem. 2012, 22, 966-974.

50

Petoral, R. M.; Söderlind, F.; Klasson, A.; Suska, A.; Fortin, M. A.; Abrikossova, N.; Selegård, L.; Käll, P. O.; Engström, M.; Uvdal, K. Synthesis and characterization of Tb3+ doped Gd2O3 nanocrystals: A bifunctional material with combined fluorescent labeling and MRI contrast agent properties. J. Phys. Chem. C 2009, 113, 6913-6920.

51

Chang, C. K.; Kimura, F.; Kimura, T.; Wada, H. Preparation and characterization of rod-like Eu: Gd2O3 phosphor through a hydrothermal routine. Mater. Lett. 2005, 59, 1037-1041.

52

Louis, C.; Bazzi, R.; Flores, M. A.; Zheng, W.; Lebbou, K.; Tillement, O.; Mercier, B.; Dujardin, C.; Perriat, P. Synthesis and characterization of Gd2O3: Eu3+ phosphor nanoparticles by a sol-lyophilization technique. J. Solid State Chem. 2003, 173, 335-341.

53

Goldys, E. M.; Drozdowicz-Tomsia, K.; Sun, J. J.; Dosev, D.; Kennedy, I. M.; Yatsunenko, S.; Godlewski, M. Optical characterization of Eu-doped and undoped Gd2O3 nanoparticles synthesized by the hydrogen flame pyrolysis method. J. Am. Chem. Soc. 2006, 128, 14498-14505.

54

Mohapatra, S.; Mallick, S. K.; Maiti, T. K.; Ghosh, S. K.; Pramanik, P. Synthesis of highly stable folic acid conjugated magnetite nanoparticles for targeting cancer cells. Nanotechnology 2007, 18, 385102.

55

van Leeuwen, D. A.; van Ruitenbeek, J. M.; de Jongh, L. J.; Ceriotti, A.; Pacchioni, G.; Häberlen, O. D.; Rösch, N. Quenching of magnetic moments by ligand-metal interactions in nanosized magnetic metal-clusters. Phys. Rev. Lett. 1994, 73, 1432-1435.

56

Jacobsohn, L. G.; Bennett, B. L.; Muenchausen, R. E.; Tornga, S. C.; Thompson, J. D.; Ugurlu, O.; Cooke, D. W.; Sharma, A. L. L. Multifunction Gd2O3: Eu nanocrystals produced by solution combustion synthesis: Structural, luminescent, and magnetic characterization. J. Appl. Phys. 2008, 103, 104303.

57

Caravan, P. Strategies for increasing the sensitivity of gadolinium based MRI contrast agents. Chem. Soc. Rev. 2006, 35, 512-523.

Publication history
Copyright
Acknowledgements

Publication history

Received: 08 July 2013
Revised: 10 January 2014
Accepted: 16 January 2014
Published: 23 April 2014
Issue date: May 2014

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014

Acknowledgements

Acknowledgements

The paper is dedicated to the memory of Dr. Konan Pei who contributed to the main idea of the experiment and passed away in 2011. This work was supported by the "National Science Council", Taiwan, China (NSC 100-2113-M-003-010-MY3). We thank the Taiwan Mouse Clinic which is funded by the "National Research Program for Biopharmaceuticals" (NRPB) at the "National Science Council" (NSC) of Taiwan, China for technical support in CT imaging experiments.

Return