Journal Home > Volume 7 , Issue 4

We report a novel chemical vapor deposition (CVD) based strategy to synthesize carbon-coated Fe2O3 nanoparticles dispersed on graphene sheets (Fe2O3@C@G). Graphene sheets with high surface area and aspect ratio are chosen as space restrictor to prevent the sintering and aggregation of nanoparticles during high temperature treatments (800 ℃). In the resulting nanocomposite, each individual Fe2O3 nanoparticle (5 to 20 nm in diameter) is uniformly coated with a continuous and thin (two to five layers) graphitic carbon shell. Further, the core-shell nanoparticles are evenly distributed on graphene sheets. When used as anode materials for lithium ion batteries, the conductive-additive-free Fe2O3@C@G electrode shows outstanding Li+ storage properties with large reversible specific capacity (864 mAh/g after 100 cycles), excellent cyclic stability (120% retention after 100 cycles at 100 mA/g), high Coulombic efficiency (~99%), and good rate capability.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Preparation of carbon-coated iron oxide nanoparticles dispersed on graphene sheets and applications as advanced anode materials for lithium-ion batteries

Show Author's information Huilong Fei1,§Zhiwei Peng1,§Lei Li1Yang Yang1,2Wei Lu1Errol L. G. Samuel1Xiujun Fan1James M. Tour1,2,3( )
Department of ChemistryRice University, 6100 Main StreetHouston, Texas77005USA
Richard E. Smalley Institute for Nanoscale Science and TechnologyRice University, 6100 Main StreetHouston, Texas77005USA
Department of Materials Science and NanoEngineeringRice University, 6100 Main StreetHouston, Texas77005USA

§ These authors contribute equally to this work.

Abstract

We report a novel chemical vapor deposition (CVD) based strategy to synthesize carbon-coated Fe2O3 nanoparticles dispersed on graphene sheets (Fe2O3@C@G). Graphene sheets with high surface area and aspect ratio are chosen as space restrictor to prevent the sintering and aggregation of nanoparticles during high temperature treatments (800 ℃). In the resulting nanocomposite, each individual Fe2O3 nanoparticle (5 to 20 nm in diameter) is uniformly coated with a continuous and thin (two to five layers) graphitic carbon shell. Further, the core-shell nanoparticles are evenly distributed on graphene sheets. When used as anode materials for lithium ion batteries, the conductive-additive-free Fe2O3@C@G electrode shows outstanding Li+ storage properties with large reversible specific capacity (864 mAh/g after 100 cycles), excellent cyclic stability (120% retention after 100 cycles at 100 mA/g), high Coulombic efficiency (~99%), and good rate capability.

Keywords: nanoparticles, graphene, anode, chemical vapor deposition (CVD), lithium ion batteries, carbon coating, Fe2O3

References(45)

1

Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652-657.

2

Scrosati, B. Challenge of portable power. Nature 1995, 373, 557-558.

3

Reddy, M. V.; Yu, T.; Sow, C. H.; Shen, Z. X.; Lim, C. T.; Subba Rao, G. V.; Chowdari, B. V. R. α-Fe2O3 nanoflakes as an anode material for Li-ion batteries. Adv. Funct. Mater. 2007, 17, 2792-2799.

4

Jia, X.; Chen, Z.; Cui, X.; Peng, Y.; Wang, X.; Wang, G.; Wei, F.; Lu, Y. Building robust architectures of carbon and metal oxide nanocrystals toward high-performance anodes for lithium-ion batteries. ACS Nano 2012, 6, 9911-9919.

5

Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J. M. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 2000, 407, 496-499.

6

Peng, C.; Chen, B.; Qin, Y.; Yang, S.; Li, C.; Zuo, Y.; Liu, S.; Yang, J. Facile ultrasonic synthesis of CoO quantum dot/graphene nanosheet composites with high lithium storage capacity. ACS Nano 2012, 6, 1074-1081.

7

Yu, A.; Park, H. W.; Davies, A.; Higgins, D. C.; Chen, Z.; Xiao, X. Free-standing layer-by-layer hybrid thin film of graphene-MnO2 nanotube as anode for lithium ion batteries. J. Phys. Chem. Lett. 2011, 2, 1855-1860.

8

Needham, S. A.; Wang, G. X.; Liu, H. K. Synthesis of NiO nanotubes for use as negative electrodes in lithium ion batteries. J. Power Sources 2006, 159, 254-257.

9

Zhu, X.; Zhu, Y.; Murali, S.; Stoller, M. D.; Ruoff, R. S. Nanostructured reduced graphene oxide/Fe2O3 composite as a high-performance anode material for lithium ion batteries. ACS Nano 2011, 5, 3333-3338.

10

Xu, X.; Cao, R.; Jeong, S.; Cho, J. Spindle-like mesoporous α-Fe2O3 anode material prepared from MOF template for high-rate lithium batteries. Nano Lett. 2012, 12, 4988-4991.

11

Han, F.; Li, D.; Li, W.; Lei, C.; Sun, Q.; Lu, A. Nanoengineered polypyrrole-coated Fe2O3@C multifunctional composites with an improved cycle stability as lithium-ion anodes. Adv. Funct. Mater. 2012, 23, 1692-1697.

12

Yuan, S. M.; Li, J. X.; Yang, L. T.; Su, L. W.; Liu, L.; Zhou, Z. Preparation and lithium storage performances of mesoporous Fe3O4@C microcapsules. ACS Appl. Mater. Inter. 2011, 3, 705-709.

13

Yu, W.; Hou, P.; Zhang, L.; Li, F.; Liu, C.; Cheng, H. Preparation and electrochemical property of Fe2O3 nanoparticles-filled carbon nanotubes. Chem. Commun. 2010, 46, 8576-8578.

14

Zhang, W.; Wu, X.; Hu, J.; Guo, Y.; Wan, L. Carbon coated Fe3O4 nanospindles as a superior anode material for lithium-ion batteries. Adv. Funct. Mater. 2008, 18, 3941-3946.

15

Arico, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J. M.; Van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 2005, 4, 366-377.

16

Poizot, P.; Laruelle, S.; Grugeon, S.; Tarascon, J. M. Rationalization of the low-potential reactivity of 3d-metal- based inorganic compounds toward Li. J. Electrochem. Soc. 2002, 149, A1212-1217.

17

Arora, P.; White, R. E.; Doyle, M. Capacity fade mechanisms and side reactions in lithium-ion batteries. J. Electrochem. Soc. 1998, 145, 3647-3667.

18

Inagaki, M. Carbon coating for enhancing the functionalities of materials. Carbon 2012, 50, 3247-3266.

19

Yang, S.; Sun, Y.; Chen, L.; Hernandez, Y.; Feng, X.; Müllen, K. Porous iron oxide ribbons grown on graphene for high- performance lithium storage. Sci. Rep. 2012, 2, 427-433.

20

Li, H.; Zhou, H. Enhancing the performances of Li-ion batteries by carbon-coating: Present and future. Chem. Commun. 2012, 48, 1201-1217.

21

Li, B.; Cao, H.; Shao, J.; Qu, M. Enhanced anode performances of the Fe3O4-carbon-rGO three dimensional composite in lithium ion batteries. Chem. Commun. 2011, 47, 10374-10376.

22

Liu, H.; Wang, G.; Wang, J.; Wexler, D. Magnetite/carbon core-shell nanorods as anode materials for lithium-ion batteries. Electrochem. Commun. 2008, 10, 1879-1882.

23

Muraliganth, T.; Vadivel Murugan, A.; Manthiram, A. Facile synthesis of carbon-decorated single-crystalline Fe3O4 nanowires and their application as high performance anode in lithium ion batteries. Chem. Commun. 2009, 7360-7362.

24

Lu, A. H.; Li, W. C.; Salabas, E. L.; Spliethoff, B.; Schüth, F. Low temperature catalytic pyrolysis for the synthesis of high surface area, nanostructured graphitic carbon. Chem. Mater. 2006, 18, 2086-2094.

25

Wilcox, J. D.; Doeff, M. M.; Marcinek, M.; Kostecki, R. Factors influencing the quality of carbon coatings on LiFePO4. J. Electrochem. Soc. 2007, 154, A389-395.

26

L'vov, B. V. Mechanism of carbothermal reduction of iron, cobalt, nickel and copper oxides. Thermochim. Acta 2000, 360, 109-120.

27

Li, Z.; Sun, Q.; Gao, M. Preparation of water-soluble magnetite nanocrystals from hydrated ferric salts in 2-pyrrolidone: Mechanism leading to Fe3O4. Angew. Chem. Int. Edit. 2005, 44, 123-126.

28

Martha, S. K.; Grinblat, J.; Haik, O.; Zinigrad, E.; Drezen, T.; Miners, J. H.; Exnar, I.; Kay, A.; Markovsky, B.; Aurbach, D. LiMn0.8Fe0.2PO4: An advanced cathode material for rechargeable lithium batteries. Angew. Chem. Int. Edit. 2009, 48, 8559-8563.

29

Zhao, L.; Hu, Y. S.; Li, H.; Wang, Z.; Chen, L. Porous Li4Ti5O12 coated with N-doped carbon from ionic liquids for Li-ion batteries. Adv. Mater. 2011, 23, 1385-1388.

30

Zhang, W. M.; Hu, J. S.; Guo, Y. G.; Zheng, S. F.; Zhong, L. S.; Song, W. G.; Wan, L. J. Tin-nanoparticles encapsulated in elastic hollow carbon spheres for high-performance anode material in lithium-ion batteries. Adv. Mater. 2008, 20, 1160-1165.

31

Lee, K. T.; Jung, Y. S.; Oh, S. M. Synthesis of tin- encapsulated spherical hollow carbon for anode material in lithium secondary batteries. J. Am. Chem. Soc. 2003, 125, 5652-5653.

32

Zhou, J.; Song, H.; Chen, X.; Zhi, L.; Yang, S.; Huo, J.; Yang, W. Carbon-encapsulated metal oxide hollow nanoparticles and metal oxide hollow nanoparticles: A general synthesis strategy and its application to lithium-ion batteries. Chem. Mater. 2009, 21, 2935-2940.

33

Yu, W. J.; Hou, P. X.; Li, F.; Liu, C. Improved electrochemical performance of Fe2O3 nanoparticles confined in carbon nanotubes. J. Mater. Chem. 2012, 22, 13756-13763.

34

Fujii, T.; de Groot, F. M. F.; Sawatzky, G. A.; Voogt, F. C.; Hibma, T.; Okada, K. In situ XPS analysis of various iron oxide films gown by NO2-assisted molecular-beam epitaxy. Phys. Rev. B 1999, 59, 3195-3202.

35

Zhou, G.; Wang, D. W.; Li, F.; Zhang, L.; Li, N.; Wu, Z. S.; Wen, L.; Lu, G. Q.; Cheng, H. M. Graphene-wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries. Chem. Mater. 2010, 22, 5306-5313.

36

Zhou, W.; Lin, L.; Wang, W.; Zhang, L.; Wu, Q.; Li, J.; Guo, L. Hierarchial mesoporous hematite with "electron-transport channels" and its improved performances in photocatalysis and lithium ion batteries. J. Phys. Chem. C 2011, 115, 7126-7133.

37

Sun, B.; Horvat, J.; Kim, H. S.; Kim, W. S.; Ahn, J.; Wang, G. Synthesis of mesoporous α-Fe2O3 nanostructures for highly sensitive gas sensors and high capacity anode materials in lithium ion batteries. J. Phys. Chem. C 2010, 114, 18753-18761.

38

Ma, Y.; Ji, G.; Lee, J. Y. Synthesis of mixed-conducting carbon coated porous γ-Fe2O3 microparticles and their properties for reversible lithiumi storage. J. Mater. Chem. 2011, 21, 13009-13014.

39

Chou, S. L.; Wang, J. Z.; Wexler, D.; Konstantinov, K.; Zhong, C.; Liu, H. K.; Dou, S. X. High-surface-area γ-Fe2O3/carbon nanocomposite: One-step synthesis and its highly reversible and enhanced high-rate lithium storage properties. J. Mater. Chem. 2010, 20, 2092-2098.

40

Wang, Z.; Luan, D.; Madhavi, S.; Li, C. M.; Lou, X. W. γ-Fe2O3 nanotubes with superior lithium storage capability. Chem. Commun. 2011, 47, 8061-8063.

41

Wang, B.; Chen, J. S.; Wu, H. B.; Wang, Z.; Lou, X. W. Quasiemulsion-templated formation of α-Fe2O3 hollow spheres with enhanced lithium storage properties. J. Am. Chem. Soc. 2011, 133, 17146-17148.

42

Wang, Z.; Luan, D.; Madhavi, S.; Hu, Y.; Lou, X. W. Assembling carbon-coated γ-Fe2O3 hollow nanohorns on the CNT backbone for superior lithium storage capability. Energ. Environ. Sci. 2012, 5, 5252-5256.

43

Kang, E.; Jung, Y. S.; Cavanagh, A. S.; Kim, G. H.; George, S. M.; Dillon, A. C.; Kim, J. K.; Lee, J. Fe3O4 nanoparticles confined in mesocellular carbon foam for high performance anode materials for lithium-ion batteries. Adv. Funct. Mater. 2011, 21, 2430-2438.

44

Zhou, G.; Wang, D. W.; Hou, P. X.; Li, W.; Li, N.; Liu, C.; Li, F.; Cheng, H. M. A nanosized Fe2O3 decorated single- walled carbon nanotube membrane as a high-performance flexible anode for lithium ion batteries. J. Mater. Chem. 2012, 22, 17942-17946.

45

Han, F.; Li, W. C.; Li, M. R.; Lu, A. H. Fabrication of superior-performance SnO2@C composites for lithium-ion anodes using tubular mesoporous carbon with thin carbon walls and high pore volume. J. Mater. Chem. 2012, 22, 9645-9651.

File
12274_2014_416_MOESM1_ESM.pdf (1.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 19 November 2013
Revised: 08 January 2014
Accepted: 13 January 2014
Published: 01 April 2014
Issue date: April 2014

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014

Acknowledgements

Acknowledgements

Support came from the Office of Naval Research (ONR) Multidisciplinary University Research Initiative (MURI) program (Nos. #00006766 and N00014-09-1-1066), the Air Force Office of Scientific Research (No. FA9550- 09-1-0581), the Air Force Office of Scientific Research (AFOSR) Multidisciplinary University Research Initiative (MURI) program (No. FA9550-12-1-0035), and China Scholarship Council.

Return