Journal Home > Volume 7 , Issue 3

Utilization of visible light is of crucial importance for exploiting efficient semiconductor catalysts for solar water splitting. In this study, an advanced ion implantation method was utilized to dope Cu ions into ZnO nanorod arrays for photoelectrochemical water splitting in visible light. X-ray diffraction (XRD) and X-ray photo-electron spectroscopy (XPS) results revealed that Cu+ together with a small amount of Cu2+ were highly dispersed within the ZnO nanorod arrays. The Cu ion doped ZnO nanorod arrays displayed extended optical absorption and enhanced photoelectrochemical performance under visible light illumination (λ > 420 nm). A considerable photocurrent density of 18 μA/cm2 at 0.8 V (vs. a saturated calomel electrode) was achieved, which was about 11 times higher than that of undoped ZnO nanorod arrays. This study proposes that ion implantation could be an effective approach for developing novel visible-light-driven photocatalytic materials for water splitting.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Activating ZnO nanorod photoanodes in visible light by Cu ion implantation

Show Author's information Meng Wang1Feng Ren2Guangxu Cai2Yichao Liu2Shaohua Shen1( )Liejin Guo1
International Research Centre for Renewable Energy State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong UniversityShaanxi 710049 China
School of Physics and Technology, Center for Ion Beam Application Wuhan UniversityWuhan 430072 China

Abstract

Utilization of visible light is of crucial importance for exploiting efficient semiconductor catalysts for solar water splitting. In this study, an advanced ion implantation method was utilized to dope Cu ions into ZnO nanorod arrays for photoelectrochemical water splitting in visible light. X-ray diffraction (XRD) and X-ray photo-electron spectroscopy (XPS) results revealed that Cu+ together with a small amount of Cu2+ were highly dispersed within the ZnO nanorod arrays. The Cu ion doped ZnO nanorod arrays displayed extended optical absorption and enhanced photoelectrochemical performance under visible light illumination (λ > 420 nm). A considerable photocurrent density of 18 μA/cm2 at 0.8 V (vs. a saturated calomel electrode) was achieved, which was about 11 times higher than that of undoped ZnO nanorod arrays. This study proposes that ion implantation could be an effective approach for developing novel visible-light-driven photocatalytic materials for water splitting.

Keywords: water splitting, ion implantation, photoanode, ZnO nanorods, Cu ion doping

References(59)

1

Tian, Z. R.; Voigt, J. A.; Liu, J.; McKenzie, B.; McDermott, M. J.; Rodriguez, M. A.; Konishi, H.; Xu, H. Complex and oriented ZnO nanostructures. Nat. Mater. 2003, 2, 821–826.

2

Lakshmi, B. B.; Dorhout, P. K.; Martin, C. R. Sol–gel template synthesis of semiconductor nanostructures. Chem. Mater. 1997, 9, 857–862.

3

Sakthivel, S.; Neppolian, B.; Shankar, M. V.; Arabindoo, B.; Palanichamy, M.; Murugesan, V. Solar photocatalytic degradation of azo dye: Comparison of photocatalytic efficiency of ZnO and TiO2. Sol. Energy Mater. Sol. C 2003, 77, 65–82.

4

Yang, J. L.; An, S. J.; Park, W. I.; Yi, G. C.; Choi, W. Photocatalysis using ZnO thin films and nanoneedles grown by metal–organic chemical vapor deposition. Adv. Mater. 2004, 16, 1661–1664.

5

Wu, J. -J.; Tseng, C. -H. Photocatalytic properties of nc-Au/ZnO nanorod composites. Appl. Catal. B 2006, 66, 51–57.

6

Mansilla, H. D.; Villaseñor, J.; Maturana, G.; Baeza, J.; Freer, J.; Durán, N. ZnO-catalysed photodegradation of kraft black liquor. J. Photoch. Photobio. A 1994, 78, 267–273.

7

Gu, L.; Zheng, K.; Zhou, Y.; Li, J.; Mo, X.; Patzke, G. R.; Chen, G. Humidity sensors based on ZnO/TiO2 core/shell nanorod arrays with enhanced sensitivity. Sens. Actuators. B 2011, 159, 1–7.

8

Akpan, U. G.; Hameed, B. H. The advancements in sol–gel method of doped-TiO2 photocatalysts. Appl. Catal., A 2010, 375, 1–11.

9

Das, S. C.; Green, R. J.; Podder, J.; Regier, T. Z.; Chang, G. S.; Moewes, A. Band gap tuning in ZnO through Ni doping via spray pyrolysis. J. Phys. Chem. C 2013, 117, 12745–12753.

10

Yang, X.; Wolcott, A.; Wang, G.; Sobo, A.; Fitzmorris, R. C.; Qian, F.; Zhang, J. Z.; Li, Y. Nitrogen-doped ZnO nanowire arrays for photoelectrochemical water splitting. Nano. Lett. 2009, 9, 2331–2336.

11

Law, M.; Greene, L. E.; Johnson, J. C.; Saykally, R.; Yang, P. Nanowire dye-sensitized solar cells. Nat. Mater. 2005, 4, 455–459.

12

Huang, K. -C.; Chang, Y. -H.; Chen, C. -Y.; Liu, C. -Y.; Lin, L. -Y.; Vittal, R.; Wu, C. -G.; Lin, K. -F.; Ho, K. -C. Improved exchange reaction in an ionic liquid electrolyte of a quasi-solid-state dye-sensitized solar cell by using 15-crown-5-functionalized MWCNT. J. Mater. Chem. 2011, 21, 18467–18474.

13

Schölin, R.; Quintana, M.; Johansson, E. M. J.; Hahlin, M.; Marinado, T.; Hagfeldt, A.; Rensmo, H. Preventing dye aggregation on ZnO by adding water in the dye-sensitization process. J. Phys. Chem. C 2011, 115, 19274–19279.

14

Leschkies, K. S.; Divakar, R.; Basu, J.; Enache-Pommer, E.; Boercker, J. E.; Carter, C. B.; Kortshagen, U. R.; Norris, D. J.; Aydil, E. S. Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices. Nano Lett. 2007, 7, 1793–1798.

15

Tang, Y.; Hu, X.; Chen, M.; Luo, L.; Li, B.; Zhang, L. CdSe nanocrystal sensitized ZnO core–shell nanorod array films: Preparation and photovoltaic properties. Electrochim. Acta 2009, 54, 2742–2747.

16

Bang, J. H.; Kamat, P. V. Quantum dot sensitized solar cells. A tale of two semiconductor nanocrystals: CdSe and CdTe. ACS Nano 2009, 3, 1467–1476.

17

Chouhan, N.; Yeh, C. L.; Hu, S. F.; Huang, J. H.; Tsai, C. W.; Liu, R. S.; Chang, W. S.; Chen, K. H. Array of CdSe QD-sensitized ZnO nanorods serves as photoanode for water splitting. J. Electrochem. Soc. 2010, 157, B1430–B1433.

18

Wang, X.; Zhu, H.; Xu, Y.; Wang, H.; Tao, Y.; Hark, S.; Xiao, X.; Li, Q. Aligned ZnO/CdTe core–shell nanocable arrays on indium tin oxide: Synthesis and photoelectrochemical properties. ACS Nano 2010, 4, 3302–3308.

19

Tanabe, I.; Tatsuma, T. Plasmonic manipulation of color and morphology of single silver nanospheres. Nano. Lett. 2012, 12, 5418–5421.

20

Rycenga, M.; Cobley, C. M.; Zeng, J.; Li, W.; Moran, C. H.; Zhang, Q.; Qin, D.; Xia, Y. Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem. Rev. 2011, 111, 3669–3712.

21

Burlacov, I.; Jirkovský, J.; Müller, M.; Heimann, R. B. Induction plasma-sprayed photocatalytically active titania coatings and their characterisation by micro-Raman spectroscopy. Surf. Coat. Technol. 2006, 201, 255–264.

22

Narayan, H.; Alemu, H.; Macheli, L.; Thakurdesai, M.; Rao, T. K. G. Synthesis and characterization of Y3+-doped TiO2 nanocomposites for photocatalytic applications. Nanotechnology 2009, 20, 255601.

23

Jayakumar, O. D.; Salunke, H. G.; Kadam, R. M.; Mohapatra, M.; Yaswant, G.; Kulshreshtha, S. K. Magnetism in Mn-doped ZnO nanoparticles prepared by a co-precipitation method. Nanotechnology 2006, 17, 1278–1285.

24

Ba-Abbad, M. M.; Kadhum, A. A. H.; Mohamad, A. B.; Takriff, M. S.; Sopian, K. Visible light photocatalytic activity of Fe3+-doped ZnO nanoparticle prepared via sol–gel technique. Chemosphere 2013, 91, 1604–1611.

25

Yates, H. M.; Nolan, M. G.; Sheel, D. W.; Pemble, M. E. The role of nitrogen doping on the development of visible light-induced photocatalytic activity in thin TiO2 films grown on glass by chemical vapour deposition. J. Photoch. Photobio. A 2006, 179, 213–223.

26

Fragalà, M. E.; Cacciotti, I.; Aleeva, Y.; Lo Nigro, R. L.; Bianco, A.; Malandrino, G.; Spinella, C.; Pezzotti, G.; Gusmano, G. Core–shell Zn-doped TiO2–ZnO nanofibers fabricated via a combination of electrospinning and metal-organic chemical vapour deposition. CrystEngComm 2010, 12, 3858–3865.

27

Bhirud, A. P.; Sathaye, S. D.; Waichal, R. P.; Nikam, L. K.; Kale, B. B. An eco-friendly, highly stable and efficient nanostructured p-type N-doped ZnO photocatalyst for environmentally benign solar hydrogen production. Green Chem. 2012, 14, 2790–2798.

28

Ni, M.; Leung, M. K. H.; Leung, D. Y. C.; Sumathy, K. A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew. Sust. Energ. Rev. 2007, 11, 401–425.

29

Ghicov, A.; Macak, J. M.; Tsuchiya, H.; Kunze, J.; Haeublein, V.; Frey, L.; Schmuki, P. Ion implantation and annealing for an efficient N-doping of TiO2 nanotubes. Nano Lett. 2006, 6, 1080–1082.

30

Ghicov, A.; Macak, J. M.; Tsuchiya, H.; Kunze, J.; Haeublein, V.; Kleber, S.; Schmuki, P. TiO2 nanotube layers: Dose effects during nitrogen doping by ion implantation. Chem. Phys. Lett. 2006, 419, 426–429.

31

Zhou, J.; Takeuchi, M.; Ray, A. K.; Anpo, M.; Zhao, X. S. Enhancement of photocatalytic activity of P25 TiO2 by vanadium-ion implantation under visible light irradiation. J. Colloid Interf. Sci. 2007, 311, 497–501.

32

Anpo, M.; Takeuchi, M. The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation. J. Catal. 2003, 216, 505–516.

33

Takeuchi, M.; Sakai, S.; Matsuoka, M.; Anpo, M. Preparation of the visible light responsive TiO2 thin film photocatalysts by the RF magnetron sputtering deposition method. Res. Chem. Intermediat. 2009, 35, 973–983.

34

Greene, L. E.; Law, M.; Goldberger, J.; Kim, F.; Johnson, J. C.; Zhang, Y.; Saykally, R. J.; Yang, P. Low-temperature wafer-scale production of ZnO nanowire arrays. Angew. Chem. Int. Ed. 2003, 42, 3031–3034.

35

Wang, M.; Jiang, J.; Liu, G.; Shi, J.; Guo, L. Controllable synthesis of double layered tubular CdSe/ZnO arrays and their photoelectrochemical performance for hydrogen production. Appl. Catal. B 2013, 138139, 304–310.

36

Ren, F.; Zhou, X. D.; Liu, Y. C.; Wang, Y. Q.; Cai, G. X.; Xiao, X. H.; Dai, Z. G.; Li, W. Q.; Yan, S. J.; Wu, W.; et al. Fabrication and properties of TiO2 nanofilms on different substrates by a novel and universal method of Ti-ion implantation and subsequent annealing. Nanotechnology 2013, 24, 255603.

37

Ren, F.; Jiang, C.; Liu, C.; Wang, J.; Oku, T. Controlling the morphology of Ag nanoclusters by ion implantation to different doses and subsequent annealing. Phys. Rev. Lett. 2006, 97, 165501.

38

Yang, F.; Ma, S.; Zhang, X.; Zhang, M.; Li, F.; Liu, J.; Zhao, Q. Blue–green and red luminescence from ZnO/porous silicon and ZnO: Cu/porous silicon nanocomposite films. Superlattice. Microst. 2012, 52, 210–220.

39

Shen, S.; Kronawitter, C. X.; Jiang, J.; Guo, P.; Guo, L.; Mao, S. S. A ZnO/ZnO: Cr isostructural nanojunction electrode for photoelectrochemical water splitting. Nano Energy 2013, 2, 958–965.

40

Manjón, F. J.; Marí, B.; Serrano, J.; Romero, A. H. Silent Raman modes in zinc oxide and related nitrides. J. Appl. Phys. 2005, 97, 053516.

41

Serrano, J.; Manjón, F. J.; Romero, A. H.; Widulle, F.; Lauck, R.; Cardona, M. Dispersive phonon linewidths: The E2 phonons of ZnO. Phys. Rev. Lett. 2003, 90, 055510.

42

Kaschner, A.; Haboeck, U.; Strassburg, M.; Strassburg, M.; Kaczmarczyk, G.; Hoffmann, A.; Thomsen, C.; Zeuner, A.; Alves, H. R.; Hofmann, D. M.; et al. Nitrogen-related local vibrational modes in ZnO: N. Appl. Phys. Lett. 2002, 80, 1909–1911.

43

Tütüncü, H. M.; Srivastava, G. P.; Duman, S. Lattice dynamics of the zinc-blende and wurtzite phases of nitrides. Physica B 2002, 316–317, 190194.

44

Demangeot, F.; Groenen, J.; Frandon, J.; Renucci, M. A.; Briot, O.; Clur, S.; Aulombard, R. L. Coupling of GaN- and AlN-like longitudinal optic phonons in Ga1−xAlxN solid solutions. Appl. Phys. Lett. 1998, 72, 2674–2676.

45

Wang, L. S.; Tripathy, S.; Sun, W. H.; Chua, S. J. Micro-Raman spectroscopy of Si-, C-, Mg- and Be-implanted GaN layers. J. Raman Spectrosc. 2004, 35, 73–77.

46

Shuai, M.; Liao, L.; Lu, H. B.; Zhang, L.; Li, J. C.; Fu, D. J. Room-temperature ferromagnetism in Cu+ implanted ZnO nanowires. J. Phys. D 2008, 41, 135010.

47

Kulkarni, G. U.; Rao, C. N. R. EXAFS and XPS investigations of Cu/ZnO catalysts and their interaction with Co and methanol. J. Phys. D: Appl. Phys. 2003, 22, 183–189.

48

Jing, L. Q.; Qu, Y. C.; Wang, B. Q.; Li, S. D.; Jiang, B. J.; Yang, L. B.; Fu, W.; Fu, H. G.; Sun, J. Z. Review of photoluminescence performance of nano-sized semiconductor materials and its relationships with photocatalytic activity. Sol. Energ. Mat. Sol. C 2006, 90, 1773–1787.

49

Guo, P.; Jiang, J.; Shen, S.; Guo, L. ZnS/ZnO heterojunction as photoelectrode: Type Ⅱ band alignment towards enhanced photoelectrochemical performance. Int. J. Hydrogen Energy 2013, 38, 13097–13103.

50

Wang, X. B.; Song, C.; Geng, K. W.; Zeng, F.; Pan, F. Photoluminescence and Raman scattering of Cu-doped ZnO films prepared by magnetron sputtering. Appl. Surf. Sci. 2007, 253, 6905–6909.

51

Shen, S.; Jiang, J.; Guo, P.; Kronawitter, C. X.; Mao, S. S.; Guo, L. Effect of Cr doping on the photoelectrochemical performance of hematite nanorod photoanodes. Nano Energy 2012, 1, 732–741.

52

Shen, S.; Kronawitter, C. X.; Jiang, J.; Mao, S. S.; Guo, L. Surface tuning for promoted charge transfer in hematite nanorod arrays as water-splitting photoanodes. Nano Res. 2012, 5, 327–336.

53

Kouklin, N. Cu-doped ZnO nanowires for efficient and multispectral photodetection applications. Adv. Mater. 2008, 20, 2190–2194.

54

Garces, N. Y.; Wang, L.; Bai, L.; Giles, N. C.; Halliburton, L. E.; Cantwell, G. Role of copper in the green luminescence from ZnO crystals. Appl. Phys. Lett. 2002, 81, 622–624.

55

Samanta, K.; Arora, A. K.; Katiyar, R. S. Impurity induced bond-softening and defect states in ZnO: Cu. J. Appl. Phys. 2011, 110, 043523.

56

Ghosh, A.; Ghule, A.; Sharma, R. Effect of Cu doping on LPG sensing properties of soft chemically grown nano-structured ZnO thin film. J. Phys. Conf. Ser. 2012, 365, 012022.

57

Song, D. M.; Wang, T. H.; Li, J. C. First principles study of periodic size dependent band gap variation of Cu doped ZnO single-wall nanotube. J. Mol. Model. 2012, 18, 5035–5040.

58

Mora-Seró, I.; Fabregat-Santiago, F.; Denier, B.; Bisquert, J.; Tena-Zaera, R.; Elias, J.; Lévy-Clément, C. Determination of carrier density of ZnO nanowires by electrochemical techniques. Appl. Phys. Lett. 2006, 89, 203117.

59

Xing, G. Z.; Yi, J. B.; Tao, J. G.; Liu, T.; Wong, L. M.; Zhang, Z.; Li, G. P.; Wang, S. J.; Ding, J.; Sum, T. C., et al. Comparative study of room-temperature ferromagnetism in Cu-doped ZnO nanowires enhanced by structural inhomogeneity. Adv. Mater. 2008, 20, 3521–3527.

File
nr-7-3-353_ESM.pdf (834.7 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 19 November 2013
Revised: 14 December 2013
Accepted: 15 December 2013
Published: 15 January 2014
Issue date: March 2014

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2013

Acknowledgements

Acknowledgements

The authors gratefully acknowledge the financial support of the National Natural Science Foundation of China (Nos. 51102194, 51323011, and 51121092), the Doctoral Program of the Ministry of Education (No. 20110201120040) and the Nano Research Program of Suzhou City (ZXG2013003). S. Shen is supported by the Foundation for the Author of National Excellent Doctoral Dissertation of China (No. 201335) and the Fundamental Research Funds for the Central Universities.

Return