AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Ladder-like metal oxide nanowires: Synthesis, electrical transport, and enhanced light absorption properties

Bo Liang1,2Hongtao Huang2Zhe Liu1,2Gui Chen2Gang Yu2Tao Luo1,2Lei Liao3Di Chen2Guozhen Shen1( )
State Key Laboratory for Superlattices and Microstructures Institute of Semiconductors, Chinese Academy of SciencesBeijing 100083 China
Wuhan National Laboratory for Optoelectronics Huazhong University of Science and TechnologyWuhan 430074 China
Department of Physics and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education Wuhan UniversityWuhan 430074 China
Show Author Information

Graphical Abstract

Abstract

Transparent metal oxide nanowires (NWs) have attracted intense research interest in recent years. We report here the synthesis of interesting ladder-like metal oxide NWs, including In2O3, SnO2, ZnO, and Ga2O3, via a facile chemical vapor deposition (CVD) method. Their structural features and growth mechanism are demonstrated in detail by using the ladder-like In2O3 NWs as an example. Single ladder-like NW-based field-effect transistors (FETs) and photodetectors (PDs) of SnO2 were fabricated in order to investigate their electrical transport and light absorption properties. Compared with straight NW-based FETs which operate in an enhancement mode (E-mode), FETs build on ladder-like NWs operate in a depletion mode (D-mode). The ladder-like NWs also give higher carrier concentrations than conventional single nanowires. Finite-difference time-domain (FDTD) simulations have been performed on the ladder-like NWs and the results reveal a great enhancement of light absorption with both transverse-electric (TE) and transverse-magnetic (TM) polarization modes, which is in good agreement with the experimental results.

Electronic Supplementary Material

Download File(s)
nr-7-2-272_ESM.pdf (954.2 KB)

References

1

Cui, Y.; Wei, Q.; Park, H.; Lieber, C. M. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 2001, 293, 1289– 1292.

2

Tian, B.; Cohen-Karni, T.; Qing, Q.; Duan, X.; Xie, P.; Lieber, C. M. Three-dimensional, flexible nanoscale field- effect transistors as localized bioprobes. Science 2010, 329, 830–834.

3

Shen, G.; Liang, B.; Wang, X.; Huang, H.; Chen, D.; Wang, Z. L. Ultrathin In2O3 nanowires with diameters below 4 nm: Synthesis, reversible wettability switching behavior, and transparent thin-film transistor applications. ACS Nano 2011, 5, 6148–6155.

4

Duan, X.; Huang, Y.; Lieber, C. M. Nonvolatile memory and programmable logic from molecule-gated nanowires. Nano Lett. 2002, 2, 487–490.

5

Huang, M. H.; Mao, S.; Feick, H.; Yan, H.; Wu, Y.; Kind, H.; Weber, E.; Russo, R.; Yang, P. Room-temperature ultraviolet nanowire nanolasers. Science 2001, 292, 1897– 1899.

6

Fan, Z.; Ho, J. C.; Jacobson, Z. A.; Razavi, H.; Javey, A. Large-scale, heterogeneous integration of nanowire arrays for image sensor circuitry. PNAS 2008, 105, 11066–11070.

7

Panev, N.; Persson, A. I.; Sköld, N.; Samuelson, L. Sharp exciton emission from single InAs quantum dots in GaAs nanowires. Appl. Phys. Lett. 2003, 83, 2238–2240.

8

Law, M.; Greene, L. E.; Johnson, J. C.; Saykally, R.; Yang, P. Nanowire dye-sensitized solar cells. Nat. Mater. 2005, 4, 455–459.

9

Cao, L. Y.; Park, J. S.; Fan, P. Y.; Clemens, B.; Brongersma, M. L. Resonant germanium nanoantenna photodetectors. Nano Lett. 2010, 10, 1229–1233.

10

Pauzauskie, P. J.; Sirbuly, D. J.; Yang, P. D. Semiconductor nanowire ring resonator laser. Phys. Rev. Lett. 2006, 96, 143903 (1–4).

11

Leschkies, K. S.; Divakar, R.; Basu, J.; Enache-Pommer, E.; Boercker, J. E.; Carter, C. B.; Kortshagen, U. R.; Norris, D. J.; Aydil, E. S. Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices. Nano Lett. 2007, 7, 1793–1798.

12

Pettersson, H.; Trägårdh, J.; Persson, A. I.; Landin, L.; Hessman, D.; Samuelson, L. Infrared photodetectors in heterostructure nanowires. Nano Lett. 2006, 6, 229–232.

13

Lao, J.; Huang, J.; Wang, D.; Ren, Z. Self-assembled In2O3 nanocrystal chains and nanowires networks. Adv. Mater. 2004, 16, 65–69.

14

El Mir, L.; Bourgoin, J. C. Defect-enhanced electron transport through semiconductor barriers. Phys. Stat. Sol. (b) 1998, 207, 577–594.

15

Shen, J. T.; Fan, S. H. Coherent photon transport from spontaneous emission in one-dimensional waveguides. Opt. Lett. 2005, 30, 2001–2003.

16

Borgström, M. T.; Immink, G.; Ketelaars, B.; Algra, R.; Bakkers, E. P. A. M. Synergetic nanowire growth. Nat. Nanotechnol. 2007, 2, 541–544.

17

Nikoobakht, B.; Wang, X. D.; Herzing, A.; Shi, J. Scalable synthesis and device integration of self-registered one- dimensional zinc oxide nanostructures and related materials. Chem. Soc. Rev. 2013, 42, 342–365.

18

Fortunato, E. M. C.; Barquinha, P. M. C.; Pimentel, A. C. M. B. G.; Gonçalves, A. M. F.; Marques, A. J. S.; Martins, R. F. P.; Pereira, L. M. N. Wide-bandgap high-mobility ZnO thin-film transistors produced at room temperature. Appl. Phys. Lett. 2004, 85, 2541–2543.

19

Fan, Z.; Wang, D.; Chang, P. C.; Tseng, W. Y.; Lu, J. G. ZnO nanowire field-effect transistor and oxygen sensing property. Appl. Phys. Lett. 2004, 85, 5923–5925.

20

Cheng, Y.; Xiong, P.; Fields, L.; Zheng, J. P.; Yang, R. S.; Wang, Z. L. Intrinsic characteristics of semiconducting oxide nanobelt field-effect transistors. Appl. Phys. Lett. 2006, 89, 093114 (1–3).

21

Ikarashi, N.; Yako, K.; Uejima, K.; Yamamoto, T.; Ikezawa, T.; Hane, M. Correlation among crystal defects, depletion regions and junction leakage in sub-30-nm gate-length MOSFETs: Direct examinations by electron holography. JSAP 2009, 202–203.

22

Fang, G. J.; Li, D.; Yao, B. L. Influence of post-deposition annealing on the properties of transparent conductive nanocrystalline ZAO thin films prepared by RF magnetron sputtering with highly conductive ceramic target. Thin Solid Films 2002, 418, 156–162.

23

Jiménez, V. M.; Espinós, J. P.; Caballero, A.; Contreras, L.; Fernández, A.; Justo, A.; González-Elipe, A. R. SnO2 thin films prepared by ion beam induced CVD: Preparation and characterization by X-ray absorption spectroscopy. Thin Solid Films 1999, 353, 113–123.

24

Snaith, H. J.; Ducati, C. SnO2-based dye-sensitized hybrid solar cells exhibiting near unity absorbed photon-to-electron conversion efficiency. Nano Lett. 2010, 10, 1259–1265.

25

Yu, B.; Zhu, C.; Gan, F. . Exciton spectra of SnO2 nanocrystals with surficial dipole layer. Opt. Mater. 1997, 7, 15–20.

26

Yang, H. Y.; Yu, S. F.; Lau, S. P.; Tsang, S. H.; Xing, G. Z.; Wu, T. Ultraviolet coherent random lasing in randomly assembled SnO2 nanowires. Appl. Phys. Lett. 2009, 94, 241121 (1–3).

27

Li, Y.; Yin, W.; Deng, R.; Chen, R.; Chen, J.; Yan, Q.; Yao, B.; Sun, H.; Wei, S. H.; Wu, T. Realizing a SnO2-based ultraviolet light-emitting diode via breaking the dipole- forbidden rule. NPG Asia Mater. 2012, 4, e30 (1–6).

28

Jain, P. K.; Lee, K. S.; El-Sayed, I. H.; El-Sayed, M. A. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine. J. Phys. Chem. B 2006, 110, 7238–7248.

29

Hu, L.; Yan, J.; Liao, M.; Wu, L.; Fang, X. Ultrahigh external quantum efficiency from thin SnO2 nanowire ultraviolet photodetectors. Small 2011, 7, 1012– 1017.

Nano Research
Pages 272-283
Cite this article:
Liang B, Huang H, Liu Z, et al. Ladder-like metal oxide nanowires: Synthesis, electrical transport, and enhanced light absorption properties. Nano Research, 2014, 7(2): 272-283. https://doi.org/10.1007/s12274-013-0394-7

504

Views

6

Crossref

N/A

Web of Science

7

Scopus

4

CSCD

Altmetrics

Received: 29 October 2013
Revised: 26 November 2013
Accepted: 29 November 2013
Published: 06 January 2014
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2013
Return