Journal Home > Volume 7 , Issue 2

The design of hollow mesoporous nanostructures for cascade catalytic reactions can inject new vitality into the development of nanostructures. In this study, we report a versatile cooperative template-directed coating method for the synthesis of hollow and yolk–shell mesoporous zirconium titanium oxide nanospheres with varying compositions (ZrO2 content from 0 to 100%), high surface areas (465 m2·g–1) and uniform mesopores. In particular, the hexadecylamine (HDA) used in the coating procedure serves as a soft template for silica@mesostructured metal oxide core–shell nanosphere formation. By a facile solvothermal treatment route with an ammonia solution and calcination in air, the silica@mesostructured zirconium titanium oxide spheres can be converted into highly uniform hollow zirconium titanium oxide spheres. By simply replacing hard template silica nanospheres with core–shell silica nanocomposites, the synthesis approach can be further used to prepare yolk–shell mesoporous structures through the coating and etching process. The approach is similar to the preparation of mesoporous silica nanocomposites from the self-assembly of the core, the soft template cetyltrimethylammonium bromide (CTAB) and a silica precursor and can be extended as a general method to coat mesoporous zirconium titanium oxide on other commonly used hard templates (e.g., mesoporous silica spheres, mesoporous organosilica ellipsoids, polymer spheres, and carbon nanospheres). The presence of highly permeable mesoporous channels in the zirconium titanium oxide shells has been demonstrated by the reduction of 4-nitrophenol with yolk–shell Au@mesoporous zirconium titanium oxide as the catalyst. Moreover, a cascade catalytic reaction including an acid catalyzed step and a catalytic hydrogenation to afford benzimidazole derivatives can be carried out very effectively by using the accessible acidity of the yolk–shell structured mesoporous zirconium titanium oxide spheres containing a Pd core as a bifunctional catalyst, which makes the hollow zirconium titanium oxide spheres a practicable candidate for advanced catalytic systems.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

A versatile cooperative template-directed coating method to synthesize hollow and yolk–shell mesoporous zirconium titanium oxide nanospheres as catalytic reactors

Show Author's information Buyuan GuanTao WangShangjing ZengXue WangDong AnDongmei WangYu CaoDingxuan MaYunling LiuQisheng Huo( )
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry, Jilin UniversityChangchun China

Abstract

The design of hollow mesoporous nanostructures for cascade catalytic reactions can inject new vitality into the development of nanostructures. In this study, we report a versatile cooperative template-directed coating method for the synthesis of hollow and yolk–shell mesoporous zirconium titanium oxide nanospheres with varying compositions (ZrO2 content from 0 to 100%), high surface areas (465 m2·g–1) and uniform mesopores. In particular, the hexadecylamine (HDA) used in the coating procedure serves as a soft template for silica@mesostructured metal oxide core–shell nanosphere formation. By a facile solvothermal treatment route with an ammonia solution and calcination in air, the silica@mesostructured zirconium titanium oxide spheres can be converted into highly uniform hollow zirconium titanium oxide spheres. By simply replacing hard template silica nanospheres with core–shell silica nanocomposites, the synthesis approach can be further used to prepare yolk–shell mesoporous structures through the coating and etching process. The approach is similar to the preparation of mesoporous silica nanocomposites from the self-assembly of the core, the soft template cetyltrimethylammonium bromide (CTAB) and a silica precursor and can be extended as a general method to coat mesoporous zirconium titanium oxide on other commonly used hard templates (e.g., mesoporous silica spheres, mesoporous organosilica ellipsoids, polymer spheres, and carbon nanospheres). The presence of highly permeable mesoporous channels in the zirconium titanium oxide shells has been demonstrated by the reduction of 4-nitrophenol with yolk–shell Au@mesoporous zirconium titanium oxide as the catalyst. Moreover, a cascade catalytic reaction including an acid catalyzed step and a catalytic hydrogenation to afford benzimidazole derivatives can be carried out very effectively by using the accessible acidity of the yolk–shell structured mesoporous zirconium titanium oxide spheres containing a Pd core as a bifunctional catalyst, which makes the hollow zirconium titanium oxide spheres a practicable candidate for advanced catalytic systems.

Keywords: self-assembly, hollow structure, yolk–shell structure, mesoporous zirconium titanium oxide, multiple catalyst

References(93)

1

Lou, X. W.; Archer, L. A.; Yang, Z. C. Hollow micro-/nanostructures: Synthesis and applications. Adv. Mater. 2008, 20, 3987–4019.

2

An, K.; Hyeon, T. Synthesis and biomedical applications of hollow nanostructures. Nano Today 2009, 4, 359–373.

3

Sun, Y.; Mayers, B.; Xia, Y. Metal nanostructures with hollow interiors. Adv. Mater. 2003, 15, 641–646.

4

Goldberger, J.; He, R. R.; Zhang, Y. F.; Lee, S.; Yan, H. Q.; Choi, H. J.; Yang, P. D. Single-crystal gallium nitride nanotubes. Nature 2003, 422, 599–602.

5

Tang, S. H.; Huang, X. Q.; Chen, X. L.; Zheng, N. F. Hollow mesoporous zirconia nanocapsules for drug delivery. Adv. Funct. Mater. 2010, 20, 2442–2447.

6

Kim, S. W.; Kim, M.; Lee, W. Y.; Hyeon, T. Fabrication of hollow palladium spheres and their successful application to the recyclable heterogeneous catalyst for Suzuki coupling reactions. J. Am. Chem. Soc. 2002, 124, 7642–7643.

7

Yao, Y.; McDowell, M. T.; Ryu, I.; Wu, H.; Liu, N.; Hu, L. B.; Nix, W. D.; Cui, Y. Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life. Nano Lett. 2011, 11, 2949–2954.

8

Gao, C. B.; Zhang, Q.; Lu, Z. D.; Yin, Y. D. Templated synthesis of metal nanorods in silica nanotubes. J. Am. Chem. Soc. 2011, 133, 19706–19709.

9

Yang, P. P.; Quan, Z. W.; Hou, Z. Y.; Li, C. X.; Kang, X. J.; Cheng, Z. Y.; Lin, J. A magnetic, luminescent and mesoporous core–shell structured composite material as drug carrier. Biomaterials 2009, 30, 4786–4795.

10

Zhao, Y.; Jiang, L. Hollow micro/nanomaterials with multilevel interior structures. Adv. Mater. 2009, 21, 3621–3638.

11

Liu, J.; Qiao, S. Z.; Chen, J. S.; Lou, X. W.; Xing, X. R.; Lu, G. Q. Yolk/shell nanoparticles: New platforms for nanoreactors, drug delivery and lithium-ion batteries. Chem. Commun. 2011, 47, 12578–12591.

12

Kamata, K.; Lu, Y.; Xia, Y. N. Synthesis and characterization of monodispersed core–shell spherical colloids with movable cores. J. Am. Chem. Soc. 2003, 125, 2384–2385.

13

Arnal, P. M.; Comotti, M.; Schüth, F. High-temperature- stable catalysts by hollow sphere encapsulation. Angew. Chem. Int. Ed. 2006, 45, 8224–8227.

14

Lee, J.; Park, J. C.; Song, H. A nanoreactor framework of a Au@SiO2 yolk/shell structure for catalytic reduction of p-nitrophenol. Adv. Mater. 2008, 20, 1523–1528.

15

Huang, X. Q.; Guo, C. Y.; Zuo, J. Q.; Zheng, N. F.; Stucky, G. D. An assembly route to inorganic catalytic nanoreactors containing sub-10-nm gold nanoparticles with anti-aggregation properties. Small 2009, 5, 361–365.

16

Park, J. C.; Song, H. Metal@silica yolk-shell nanostructures as versatile bifunctional nanocatalysts. Nano Res. 2011, 4, 33–49.

17

Ikeda, S.; Ishino, S.; Harada, T.; Okamoto, N.; Sakata, T.; Mori, H.; Kuwabata, S.; Torimoto, T.; Matsumura, M. Ligand-free platinum nanoparticles encapsulated in a hollow porous carbon shell as a highly active heterogeneous hydrogenation catalyst. Angew. Chem. Int. Ed. 2006, 45, 7063–7066.

18

Yeo, K. M.; Choi, S.; Anisur, R. M.; Kim, J.; Lee, I. S. Surfactant-free platinum-on-gold nanodendrites with enhanced catalytic performance for oxygen reduction. Angew. Chem. Int. Ed. 2011, 50, 745–748.

19

Lou, X. W.; Yuan, C. L.; Archer, L. A. Double-walled SnO2 nano-cocoons with movable magnetic cores. Adv. Mater. 2007, 19, 3328–3332.

20

Liu, J.; Qiao, S. Z.; Budi Hartono, S.; Lu, G. Q. Monodisperse yolk–shell nanoparticles with a hierarchical porous structure for delivery vehicles and nanoreactors. Angew. Chem. Int. Ed. 2010, 49, 4981–4985.

21

Li, W.; Deng, Y. H.; Wu, Z. X.; Qian, X. F.; Yang, J. P.; Wang, Y.; Gu, D.; Zhang, F.; Tu, B.; Zhao, D. Y. Hydrothermal etching assisted crystallization: A facile route to functional yolk-shell titanate microspheres with ultrathin nanosheets-assembled double shells. J. Am. Chem. Soc. 2011, 133, 15830–15833.

22

Zhang, W. M.; Hu, J. S.; Guo, Y. G.; Zheng, S. F.; Zhong, L. S.; Song, W. G.; Wan, L. J. Tin-nanoparticles encapsulated in elastic hollow carbon spheres for high-performance anode material in lithium-ion batteries. Adv. Mater. 2008, 20, 1160–1165.

23

Kim, J.; Piao, Y. Z.; Lee, N.; Park, Y. I.; Lee, I. H.; Lee, J. H.; Paik, S. R.; Hyeon, T. Magnetic nanocomposite spheres decorated with NiO nanoparticles for a magnetically recyclable protein separation system. Adv. Mater. 2010, 22, 57–60.

24

Zhu, Y. F.; Ikoma, T.; Hanagata, N.; Kaskel, S. Rattle-type Fe3O4@SiO2 hollow mesoporous spheres as carriers for drug delivery. Small 2010, 6, 471–478.

25

Liu, J.; Yang, H. Q.; Kleitz, F.; Chen, Z. G.; Yang, T. Y.; Strounina, E.; Lu, G. Q.; Qiao, S. Z. Yolk–shell hybrid materials with a periodic mesoporous organosilica shell: Ideal nanoreactors for selective alcohol oxidation. Adv. Funct. Mater. 2012, 22, 591–599.

26

Fang, X. L.; Liu, Z. H.; Hsieh, M. F.; Chen, M.; Liu, P. X.; Chen, C.; Zheng, N. F. Hollow mesoporous aluminosilica spheres with perpendicular pore channels as catalytic nanoreactors. ACS Nano 2012, 6, 4434–4444.

27

Tan, L. F.; Chen, D.; Liu, H. Y.; Tang, F. Q. A silica nanorattle with a mesoporous shell: An ideal nanoreactor for the preparation of tunable gold cores. Adv. Mater. 2010, 22, 4885–4889.

28

Qiao, S. Z.; Lin, C. X.; Jin, Y. G.; Li, Z.; Yan, Z. M.; Hao, Z. Q.; Huang, Y. N.; Lu, G. Q. Surface-functionalized periodic mesoporous organosilica hollow spheres. J. Phys. Chem. C 2009, 113, 8673–8682.

29

Wu, X. J.; Xu, D. S. Soft template synthesis of yolk/silica shell particles. Adv. Mater. 2010, 22, 1516–1520.

30

Guan, B. Y.; Wang, X.; Xiao, Y.; Liu, Y. L.; Huo, Q. S. A versatile cooperative template-directed coating method to construct uniform microporous carbon shells for multifunctional core–shell nanocomposites. Nanoscale 2013, 5, 2469–2475.

31

Chen, Y.; Chen, H. R.; Guo, L. M.; He, Q. J.; Chen, F.; Zhou, J.; Feng, J. W.; Shi, J. L. Hollow/rattle-type mesoporous nanostructures by a structural difference-based selective etching strategy. ACS Nano 2010, 4, 529–539.

32

Yu, M.; Lin, J.; Fang, J. Silica spheres coated with YVO4: Eu3+ layers via sol-gel process: A simple method to obtain spherical core–shell phosphors. Chem. Mater. 2005, 17, 1783–1791.

33

Yin, Y. D.; Rioux, R. M.; Erdonmez, C. K.; Hughes, S.; Somorjai, G. A.; Alivisatos, A. P. Formation of hollow nanocrystals through the nanoscale kirkendall effect. Science 2004, 304, 711–714.

34

Li, J.; Zeng, H. C. Hollowing Sn-doped TiO2 nanospheres via Ostwald ripening. J. Am. Chem. Soc. 2007, 129, 15839–15847.

35

Ding, S. J.; Chen, J. S.; Qi, G.; Duan, X. N.; Wang, Z. Y.; Giannelis, E. P.; Archer, L. A.; Lou, X. W. Formation of SnO2 hollow nanospheres inside mesoporous silica nanoreactors. J. Am. Chem. Soc. 2011, 133, 21–23.

36

Zhang, Q.; Lee, I.; Ge, J. P.; Zaera, F.; Yin, Y. D. Surface-protected etching of mesoporous oxide shells for the stabilization of metal nanocatalysts. Adv. Funct. Mater. 2010, 20, 2201–2214.

37

Yang, Y.; Liu, J.; Li, X. B.; Liu, X.; Yang, Q. H. Organosilane-assisted transformation from core–shell to yolk–shell nanocomposites. Chem. Mater. 2011, 23, 3676–3684.

38

Fang, X. L.; Chen, C.; Liu, Z. H.; Liu, P. X.; Zheng, N. F. A cationic surfactant assisted selective etching strategy to hollow mesoporous silica spheres. Nanoscale 2011, 3, 1632–1639.

39

Wong, Y. J.; Zhu, L. F.; Teo, W. S.; Tan, Y. W.; Yang, Y. H.; Wang, C.; Chen, H. Y. Revisiting the Stöber method: Inhomogeneity in silica shells. J. Am. Chem. Soc. 2011, 133, 11422–11425.

40

Caruso, F.; Caruso, R. A.; Möhwald, H. Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating. Science 1998, 282, 1111–1114.

41

Joo, S. H.; Park, J. Y.; Tsung, C. K.; Yamada, Y.; Yang, P. D.; Somorjai, G. A. Thermally stable Pt/mesoporous silica core–shell nanocatalysts for high-temperature reactions. Nat. Mater. 2009, 8, 126–131.

42

Kang, X. J.; Cheng, Z. Y.; Yang, D. M.; Ma, P. A.; Shang, M. M.; Peng, C.; Dai, Y. L.; Lin, J. Design and synthesis of multifunctional drug carriers based on luminescent rattle-type mesoporous silica microspheres with a thermosensitive hydrogel as a controlled switch. Adv. Funct. Mater. 2012, 22, 1470–1481.

43

Lei, J. Y.; Wang, L. Z.; Zhang, J. L. Superbright multifluorescent core–shell mesoporous nanospheres as trackable transport carrier for drug. ACS Nano 2011, 5, 3447–3455.

44

Niu, D. C.; Ma, Z.; Li, Y. S.; Shi, J. L. Synthesis of core–shell structured dual-mesoporous silica spheres with tunable pore size and controllable shell thickness. J. Am. Chem. Soc. 2010, 132, 15144–15147.

45

Gai, S. L.; Yang, P. P.; Li, C. X.; Wang, W. X.; Dai, Y. L.; Niu, N.; Lin, J. Synthesis of magnetic, up-conversion luminescent, and mesoporous core–shell-structured nanocomposites as drug carriers. Adv. Funct. Mater. 2010, 20, 1166–1172.

46

Cauda, V.; Schlossbauer, A.; Kecht, J.; Zürner, A.; Bein, T. Multiple core–shell functionalized colloidal mesoporous silica nanoparticles. J. Am. Chem. Soc. 2009, 131, 11361–11370.

47

Qian, X. F.; Du, J. M.; Li, B.; Si, M.; Yang, Y. S.; Hu, Y. Y.; Niu, G. X.; Zhang, Y. H.; Xu, H. L.; Tu, B. et al. Controllable fabrication of uniform core–shell structured zeolite@SBA-15 composites. Chem. Sci. 2011, 2, 2006–2016.

48

Han, Y.; Pitukmanorom, P.; Zhao, L.; Ying, J. Y. Generalized synthesis of mesoporous shells on zeolite crystals. Small 2011, 7, 326–332.

49

Guan, B. Y.; Cui, Y.; Ren, Z. Y.; Qiao, Z. A.; Wang, L.; Liu, Y. L.; Huo, Q. S. Highly ordered periodic mesoporous organosilica nanoparticles with controllable pore structures. Nanoscale 2012, 4, 6588–6596.

50

Liu, J. N.; Bu, W. B.; Zhang, S. J.; Chen, F.; Xing, H. Y.; Pan, L. M.; Zhou, L. P.; Peng, W. J.; Shi, J. L. Controlled synthesis of uniform and monodisperse upconversion core/mesoporous silica shell nanocomposites for bimodal imaging. Chem. Eur. J. 2012, 18, 2335–2341.

51

Han, Y.; Zhao, L.; Ying, J. Y. Entropy-driven helical mesostructure formation with achiral cationic surfactant templates. Adv. Mater. 2007, 19, 2454–2459.

52

Han, Y.; Zhang, D. L.; Chng, L. L.; Sun, J. L.; Zhao, L.; Zou, X. D.; Ying, J. Y. A tri-continuous mesoporous material with a silica pore wall following a hexagonal minimal surface. Nat. Chem. 2009, 1, 123–127.

53

Piao, Y. Z.; Burns, A.; Kim, J.; Wiesner, U.; Hyeon, T. Designed fabrication of silica-based nanostructured particle systems for nanomedicine applications. Adv. Funct. Mater. 2008, 18, 3745–3758.

54

Zhang, L.; Qiao, S. Z.; Jin, Y. G.; Chen, Z. G.; Gu, H. C.; Lu, G. Q. Magnetic hollow spheres of periodic mesoporous organosilica and Fe3O4 nanocrystals: Fabrication and structure control. Adv. Mater. 2008, 20, 805–809.

55

Zhou, J. S.; Song, H. H.; Chen, X. H.; Zhi, L. J.; Yang, S. B.; Huo, J. P.; Yang, W. T. Carbon-encapsulated metal oxide hollow nanoparticles and metal oxide hollow nanoparticles: A general synthesis strategy and its application to lithium- ion batteries. Chem. Mater. 2009, 21, 2935–2940.

56

Chen, X. B.; Mao, S. S. Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications. Chem. Rev. 2007, 107, 2891–2959.

57

Rappsilber, J.; Mann, M.; Ishihama, Y. Protocol for micro- purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat. Protoc. 2007, 2, 1896–1906.

58

Reddy, B. M.; Khan, A. Recent advances on TiO2-ZrO2 mixed oxides as catalysts and catalyst upports. Catal. Rev. : Sci. Eng. 2005, 47, 257–296.

59

Grätzel, M. Photoelectrochemical cells. Nature 2001, 414, 338–344.

60

Chen, D. H.; Huang, F. Z.; Cheng, Y. B.; Caruso, R. A. Mesoporous anatase TiO2 beads with high surface areas and controllable pore sizes: A superior candidate for high- performance dye-sensitized solar cells. Adv. Mater. 2009, 21, 2206–2210.

61

Li, L.; Tsung, C. K.; Yang, Z.; Stucky, G. D.; Sun, L. D.; Wang, J. F.; Yan, C. H. Rare-earth-doped nanocrystalline titania microspheres emitting luminescence via energy transfer. Adv. Mater. 2008, 20, 903–908.

62

Sauvage, F.; Chen, D. H.; Comte, P.; Huang, F. Z.; Heiniger, L. P.; Cheng, Y. B.; Caruso, R. A.; Graetzel, M. Dye- sensitized solar cells employing a single film of mesoporous TiO2 beads achieve power conversion efficiencies over 10%. ACS Nano 2010, 4, 4420–4425.

63

Huang, F. Z.; Chen, D. H.; Zhang, X. L.; Caruso, R. A.; Cheng, Y. B. Dual-function scattering layer of submicrometer-sized mesoporous TiO2 beads for high-efficiency dye-sensitized solar cells. Adv. Funct. Mater. 2010, 20, 1301–1305.

64

Yang, D. J.; Zheng, Z. F.; Zhu, H. Y.; Liu, H. W.; Gao, X. P. Titanate nanofibers as intelligent absorbents for the removal of radioactive ions from water. Adv. Mater. 2008, 20, 2777–2781.

65

Dondi, M.; Matteucci, F.; Cruciani, G. Zirconium titanate ceramic pigments: Crystal structure, optical spectroscopy and technological properties. J. Solid State Chem. 2006, 179, 233–246.

66

Zou, H.; Lin, Y. S. Structural and surface chemical properties of sol-gel derived TiO2-ZrO2 oxides. Appl. Catal., A 2004, 265, 35–42.

67

Manriquez, M. E.; Picquart, M.; Bokhimi, X.; López, T.; Quintana, P.; Coronado, J. M. X-ray diffraction, and Raman scattering study of nanostructured ZrO2-TiO2 oxides prepared by sol-gel. J. Nanosci. Nanotechnol. 2008, 8, 6623–6629.

68

Huang, Y.; Zheng, Z.; Ai, Z. H.; Zhang, L. Z.; Fan, X. X.; Zou, Z. G. Core–shell microspherical Ti1-xZrxO2 solid solution photocatalysts directly from ultrasonic spray pyrolysis. J. Phys. Chem. B 2006, 110, 19323–19328.

69

Yang, Y.; Liu, X.; Li, X. B.; Zhao, J.; Bai, S. Y.; Liu, J.; Yang, Q. H. A yolk-shell nanoreactor with a basic core and an acidic shell for cascade reactions. Angew. Chem. Int. Ed. 2012, 51, 9164–9168.

70

Stöber, W.; Fink, A.; Bohn, E. Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 1968, 26, 62–69.

71

Arnal, P. M.; Weidenthaler, C.; Schüth, F. Highly monodisperse zirconia-coated silica spheres and zirconia/silica hollow spheres with remarkable textural properties. Chem. Mater. 2006, 18, 2733–2739.

72

Pandey, A. D.; Güttel, R.; Leoni, M.; Schüth, F.; Weidenthaler, C. Influence of the microstructure of gold- zirconia yolk-shell catalysts on the CO oxidation activity. J. Phys. Chem. C 2010, 114, 19386–19394.

73

Güttel, R.; Paul, M.; Schüth, F. Ex-post size control of high-temperature-stable yolk-shell Au@ZrO2 catalysts. Chem. Commun. 2010, 46, 895–897.

74

Zhang, C. M.; Li, C. X.; Yang, J.; Cheng, Z. Y.; Hou, Z. Y.; Fan, Y.; Lin, J. Tunable luminescence in monodisperse zirconia spheres. Langmuir 2009, 25, 7078–7083.

75

Liu, Z. H.; Fang, X. L.; Chen, C.; Zheng, N. F. Pd nanoparticles encapsulated in hollow mesoporous aluminosilica nanospheres as an efficient catalyst for multistep reactions and size-selective hydrogenation. Acta Chim. Sinica 2013, 71, 334–338.

76

Busca, G. Acid catalysts in industrial hydrocarbon chemistry. Chem. Rev. 2007, 107, 5366–5410.

77

Corma, A.; Garcia, H. Lewis acids: From conventional homogeneous to green homogeneous and heterogeneous catalysis. Chem. Rev. 2003, 103, 4307–4365.

78

Ba, J. H.; Polleux, J.; Antonietti, M.; Niederberger, M. Non- aqueous synthesis of tin oxide nanocrystals and their assembly into ordered porous mesostructures. Adv. Mater. 2005, 17, 2509–2512.

79

Yuan, Q.; Liu, Q.; Song, W. G.; Feng, W.; Pu, W. L.; Sun, L. D.; Zhang, Y. W.; Yan, C. H. Ordered mesoporous Ce1-xZrxO2 solid solutions with crystalline walls. J. Am. Chem. Soc. 2007, 129, 6698–6699.

80

Luca, V.; Bertram, W. K.; Widjaja, J.; Mitchell, D. R. G.; Griffith, C. S.; Drabarek, E. Synthesis of mesoporous zirconium titanates using alkycarboxylate surfactants and their transformation to dense ceramics. Microporous Mesoporous Mater. 2007, 103, 123–133.

81

Lu, Z. D.; Gao, C. B.; Zhang, Q.; Chi, M. F.; Howe, J. Y.; Yin, Y. D. Direct assembly of hydrophobic nanoparticles to multifunctional structures. Nano Lett. 2011, 11, 3404–3412.

82

Barthos, R.; Lónyi, F.; Onyestyák, G.; Valyon, J. An IR, FR, and TPD study on the acidity of H-ZSM-5, sulfated zirconia, and sulfated zirconia-titania using ammonia as the probe molecule. J. Phys. Chem. B 2000, 104, 7311–7319.

83

Song, X. M.; Sayari, A. Sulfated zirconia-based strong solid-acid catalysts: Recent progress. Catal. Rev. : Sci. Eng. 1996, 38, 329–412.

84

Sohn, J. R.; Kim, H. W. Catalytic and surface properties of ZrO2 modified with sulfur compounds. J. Mol. Catal. 1989, 52, 361–374.

85

Lónyi, F.; Valyon, J.; Engelhardt, J.; Mizukami, F. Characterization and catalytic properties of sulfated ZrO2-TiO2 mixed oxides. J. Catal. 1996, 160, 279–289.

86

Babou, F.; Coudurier, G.; Vedrine, J. C. Acidic properties of sulfated zirconia: An infrared spectroscopic study. J. Catal. 1995, 152, 341–349.

87

Huang, Y. L.; Xu, S.; Lin, V. S. Y. Bifunctionalized mesoporous materials with site-separated Brønsted acids and bases: Catalyst for a two-step reaction sequence. Angew. Chem. Int. Ed. 2011, 50, 661–664.

88

Zeidan, R. K.; Hwang, S. J.; Davis, M. E. Multifunctional heterogeneous catalysts: SBA-15-containing primary amines and sulfonic acids. Angew. Chem. Int. Ed. 2006, 45, 6332–6335.

89

Shylesh, S.; Schünemann, V.; Thiel, W. R. Magnetically separable nanocatalysts: Bridges between homogeneous and heterogeneous catalysis. Angew. Chem. Int. Ed. 2010, 49, 3428–3459.

90

Shiju, N. R.; Alberts, A. H.; Khalid, S.; Brown, D. R.; Rothenberg, G. Mesoporous silica with site-isolated amine and phosphotungstic acid groups: A solid catalyst with tunable antagonistic functions for one-pot tandem reactions. Angew. Chem. Int. Ed. 2011, 50, 9615–9619.

91

Pan, W. T.; Miao, H. Q.; Xu, Y. J.; Navarro, E. C.; Tonra, J. R.; Corcoran, E.; Lahiji, A.; Kussie, P.; Kiselyov, A. S.; Wong, W. C. et al. 1-[4-(1H-benzoimidazol-2-yl)- phenyl]-3- [4-(1H-benzoimidazol-2-yl)-phenyl]-urea derivatives as small molecule heparanase inhibitors. Bioorg. Med. Chem. Lett. 2006, 16, 409–412.

92

Bellina, F.; Calandri, C.; Cauteruccio, S.; Rossi, R. Efficient and highly regioselective direct C-2 arylation of azoles, including free (NH)-imidazole, -benzimidazole and -indole, with aryl halides. Tetrahedron 2007, 63, 1970–1980.

93

Ayhan-Kılcıgil, G.; Altanlar, N. Synthesis and antimicrobial activities of some new benzimidazole derivatives. Il Farmaco 2003, 58, 1345–1350.

File
nr-7-2-246_ESM.pdf (1.8 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 10 October 2013
Revised: 20 November 2013
Accepted: 21 November 2013
Published: 03 January 2014
Issue date: February 2014

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2013

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 21171064 and 21071059).

Return