Journal Home > Volume 7 , Issue 2

Single crystalline CdTe nanowires have been synthesized using Au-catalyzed chemical vapor deposition. X-ray diffraction reveals the existence of non- negligible inhomogeneous compressive strain in the nanowires along the < 111 > growth direction. The effect of the strain on the electronic structure is manifested by the blue-shifted and broadened photoluminescence spectra involving shallow donor/acceptor states. Such residual strain is of great importance for a better understanding of the optical and electrical behaviors of various semiconductor nanomaterials as well as for device design and applications.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Structural and optical verification of residual strain effect in single crystalline CdTe nanowires

Show Author's information Liubing Huang1Siyuan Lu2Paichun Chang1Karan Banerjee1Robert Hellwarth1Jia Grace Lu1( )
Department of Physics and Astronomy, Department of Electrical Engineering University of Southern CaliforniaLos Angeles CA90089 USA
IBM Thomas J. Watson Research Center, 1101 Kitchawan RoadYorktown Heights, NY 10598 USA

Abstract

Single crystalline CdTe nanowires have been synthesized using Au-catalyzed chemical vapor deposition. X-ray diffraction reveals the existence of non- negligible inhomogeneous compressive strain in the nanowires along the < 111 > growth direction. The effect of the strain on the electronic structure is manifested by the blue-shifted and broadened photoluminescence spectra involving shallow donor/acceptor states. Such residual strain is of great importance for a better understanding of the optical and electrical behaviors of various semiconductor nanomaterials as well as for device design and applications.

Keywords: chemical vapor deposition, photoluminescence, CdTe nanowire, single crystalline, residual strain

References(26)

1

Xu, D. S.; Chen, D.; Xu, Y. J.; Shi, X. S.; Guo, G. L.; Gui, L. L.; Tang, Y. Q. Preparation of Ⅱ-Ⅵ group semiconductor nanowire arrays by dc electrochemical deposition in porous aluminum oxide templates. Pure Appl. Chem. 2000, 72, 127–135.

2

Wang, F. D.; Dong, A.; Sun, J.; Tang, R.; Yu, H.; Buhro, W. E. Solution-liquid-solid growth of semiconductor nanowires. Inorg. Chem. 2006, 45, 7511–7521.

3

Tang, Z. Q.; Kotov, N. A.; Giersig, M. Spontaneous organization of single CdTe nanoparticles into luminescent nanowires. Science 2002, 297, 237–240.

4

Yang, Q.; Tang, K.; Wang, C.; Qian, Y.; Zhang, S. Y. PVA-assisted synthesis and characterization of CdSe and CdTe nanowires. J. Phys. Chem. B 2002, 106, 9227–9230.

5

Yong, S. M.; Muralidharan, P.; Jo, S. H.; Kim, D. K. One-step hydrothermal synthesis of CdTe nanowires with amorphous carbon sheaths. Mater. Lett. 2010, 64, 1551–1554.

6

Hou, J. W.; Yang, X. C.; Lv, X.; Peng, D.; Huang, M.; Wang, Q. Y. One-step synthesis of CdTe branched nanowires and nanorod arrays. Appl. Surf. Sci. 2011, 257, 7684–7688.

7

Ye, Y.; Dai, L.; Sun, T.; You, L. P.; Zhu, R.; Gao, J. Y.; Peng, R. M.; Yu, D. P.; Qin, G. G. High-quality CdTe nanowires: Synthesis, characterization, and application in photoresponse devices. J. Appl. Phys. 2010, 108, 044301.

8

Hochbaum, A. I.; Fan, R.; He, R.; Yang, P. D. Controlled growth of Si nanowire arrays for device integration. Nano Lett. 2005, 5, 457–460.

9

Wang, D.; Dai, H. J. Low-temperature synthesis of single-crystal germanium nanowires by chemical vapor deposition. Angew. Chem. Int. Ed. 2002, 114, 4977–4980.

10

Utama, M. I. B.; Peng, Z.; Chen, R.; Peng, B.; Xu, X.; Dong, Y.; Wong, L. M.; Wang, S.; Sun, H.; Xiong, Q. H. Vertically aligned cadmium chalcogenide nanowire arrays on muscovite mica: A demonstration of epitaxial growth strategy. Nano Lett. 2011, 11, 3051–3057.

11

Lovergine, N.; Prete, P.; Cola, A.; Mazzer, M.; Cannoletta, D.; Mancini, A. M. Hydrogen transport vapor phase epitaxy of CdTe on hybrid substrates for X-ray detector applications. J. Electron. Mater. 1999, 28, 695–699.

12

Taraci, J. L.; Hÿtch, M. J.; Clement, T.; Peralta, P.; McCartney, M. R.; Drucker, J.; Picraux, S. T. Strain mapping in nanowires. Nanotechnology 2005, 16, 2365–2371.

13

Seo, H. W.; Bae, S. Y.; Park, J.; Yang, H.; Park, K. S.; Kim, S. Strained gallium nitride nanowires. J. Chem. Phys. 2002, 116, 9492–9499.

14

Li, S.; Yang, G. W. Universal scaling of semiconductor nanowires bandgap. Appl. Phys. Lett. , 2009, 95, 073106.

15

Sarkar, S.; Pal, S.; Sarkar, P. Electronic structure and band gap engineering of CdTe semiconductor nanowires. J. Mater. Chem. 2012, 22, 10716–10724.

16

Shi, W. S.; Zheng, Y. F.; Wang, N.; Lee, C. S.; Lee, S. T. Oxide-assisted growth and optical characterization of gallium-arsenide nanowires. Appl. Phys. Lett. 2001, 78, 3304–3306.

17

Ebina, A.; Takahashi, T. Studies of clean and adatom treated surfaces of Ⅱ-Ⅵ compounds. J. Cryst. Growth 1982, 59, 51–64.

18

Shin, H. Y.; Sun, C. Y. The exciton and edge emissions in CdTe crystals. Mater. Sci. Eng. B 1998, 52, 78–83.

19

Aguilar-Hernández, J.; Cárdenas-García, M.; Contreras-Puente, G.; Vidal-Larramendi, J. Analysis of the 1.55 eV PL band of CdTe polycrystalline films. Mater. Sci. Eng. B 2003, 102, 203–206.

20

Kraft, C.; Metzner, H.; Hädrich, M.; Reislöhner, U.; Schley, P.; Gobsch, G.; Goldhahn, R. Comprehensive photoluminescence study of chlorine activated polycrystalline cadmium telluride layers. J. Appl. Phys. 2010, 108, 124503.

21

Van Gheluwe, J.; Versluys, J.; Poelman, D.; Clauws, P. Photoluminescence study of polycrystalline CdS/CdTe thin film solar cells. Thin Solid Films 2005, 480481, 264–268.

22

Molva, E.; Francou, J. M.; Pautrat, J. L.; Saminadayar, K.; Dang, L. S. Electrical and optical properties of Au in cadmium telluride. J. Appl. Phys. 1984, 56, 2241–2249.

23

Hildebrandt, S.; Uniewski, H.; Schreiber, J.; Leipner, H. S. Localization of Y luminescence at glide dislocations in cadmium telluride. J. Phys. Ⅲ France 1997, 7, 1505–1514.

24

Halliday, D. P.; Potter, M. D. G.; Mullins, J. T.; Brinkman, A. W. Photoluminescence study of a bulk vapour grown CdTe crystal. J. Cryst. Growth 2000, 220, 30–38.

25

Bimberg, D.; Sondergeld, M. Thermal dissociation of excitons bounds to neutral acceptors in high-purity GaAs. Phys. Rev. B 1971, 4, 3451–3455.

26

Van de Walle, C. G. Band lineups and deformation potentials in the model-solid theory. Phys. Rev. B 1989, 39, 1871–1883.

File
nr-7-2-228_ESM.pdf (452.8 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 16 August 2013
Revised: 15 November 2013
Accepted: 17 November 2013
Published: 19 December 2013
Issue date: February 2014

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2013

Acknowledgements

Acknowledgements

The syntheses, XRD, electron microscopy analysis and PL measurement were supported as a part of the Center for Energy Nanoscience funded by the U.S. Department of Energy, Office of Science, Energy Frontier Research Center (EFRC) program under Award Number DE-SC0001013. The authors thank G. J. Möthrath for technical assistance in this project.

Return