Journal Home > Volume 7 , Issue 2

A carbon nanotube (CNT) sponge contains a three-dimensional conductive nanotube network, and can be used as a porous electrode for various energy devices. We present here a rational strategy to fabricate a unique CNT@polypyrrole (PPy) core–shell sponge, and demonstrate its application as a highly compressible supercapacitor electrode with high performance. A PPy layer with optimal thickness was coated uniformly on individual CNTs and inter-CNT contact points by electrochemical deposition and crosslinking of pyrrole monomers, resulting in a core–shell configuration. The PPy coating significantly improves specific capacitance of the CNT sponge to above 300 F/g, and simultaneously reinforces the porous structure to achieve better strength and fully elastic structural recovery after compression. The CNT@PPy sponge can sustain 1, 000 compression cycles at a strain of 50% while maintaining a stable capacitance (> 90% of initial value). Our CNT@PPy core–shell sponges with a highly porous network structure may serve as compressible, robust electrodes for supercapacitors and many other energy devices.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Carbon nanotube–polypyrrole core–shell sponge and its application as highly compressible supercapacitor electrode

Show Author's information Peixu Li1Enzheng Shi2Yanbing Yang3Yuanyuan Shang2Qingyu Peng2Shiting Wu2Jinquan Wei4Kunlin Wang4Hongwei Zhu4Quan Yuan3Anyuan Cao2( )Dehai Wu1( )
Department of Mechanical Engineering, Tsinghua UniversityBeijing 100084 China
Department of Materials Science and Engineering, College of Engineering, Peking UniversityBeijing 100871 China
Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education) College of Chemistry and Molecular Sciences, Wuhan UniversityWuhan 430072 China
Key Laboratory for Advanced Materials Processing Technology and School of Materials Science and Engineering, Tsinghua UniversityBeijing 100084 China

Abstract

A carbon nanotube (CNT) sponge contains a three-dimensional conductive nanotube network, and can be used as a porous electrode for various energy devices. We present here a rational strategy to fabricate a unique CNT@polypyrrole (PPy) core–shell sponge, and demonstrate its application as a highly compressible supercapacitor electrode with high performance. A PPy layer with optimal thickness was coated uniformly on individual CNTs and inter-CNT contact points by electrochemical deposition and crosslinking of pyrrole monomers, resulting in a core–shell configuration. The PPy coating significantly improves specific capacitance of the CNT sponge to above 300 F/g, and simultaneously reinforces the porous structure to achieve better strength and fully elastic structural recovery after compression. The CNT@PPy sponge can sustain 1, 000 compression cycles at a strain of 50% while maintaining a stable capacitance (> 90% of initial value). Our CNT@PPy core–shell sponges with a highly porous network structure may serve as compressible, robust electrodes for supercapacitors and many other energy devices.

Keywords: supercapacitor, polypyrrole, carbon nanotube sponge, core–shell configuration, compressible electrode

References(26)

1

Bordjiba, T.; Mohamedi, M.; Dao, L. H. New class of carbon- nanotube aerogel electrodes for electrochemical power sources. Adv. Mater. 2008, 20, 815–819.

2

Zhang, X. T.; Sui, Z. Y.; Xu, B.; Yue, S. F.; Luo, Y. J.; Zhan, W. C.; Liu, B. Mechanically strong and highly conductive graphene aerogel and its use as electrodes for electrochemical power sources. J. Mater. Chem. 2011, 21, 6494–6497.

3

Kim, K. H.; Oh, Y.; Islam, M. F. Graphene coating makes carbon nanotube aerogels superelastic and resistant to fatigue. Nat. Nanotechnol. 2012, 7, 562–566.

4

Li, H. B.; Gui, X. C.; Zhang, L. H.; Ji, C. Y.; Zhang, Y. C.; Sun, P. Z.; Wei, J. Q.; Wang, K. L.; Zhu, H. W.; Wu, D. H., et al. Enhanced transport of nanoparticles across a porous nanotube sponge. Adv. Funct. Mater. 2011, 21, 3439–3445.

5

Izadi-Najafabadi, A.; Yasuda, S.; Kobashi, K.; Yamada, T.; Futaba, D. N.; Hatori, H.; Yumura, M.; Iijima, S.; Hata, K. Extracting the full potential of single-walled carbon nanotubes as durable supercapacitor electrodes operable at 4 V with high power and energy density. Adv. Mater. 2010, 22, E235–E241.

6

Futaba, D. N.; Hata, K.; Yamada, T.; Hiraoka, T.; Hayamizu, Y.; Kakudate, Y.; Tanaike, O.; Hatori, H.; Yumura, M.; Iijima, S. Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes. Nat. Mater. 2006, 5, 987–994.

7

He, Y. M.; Chen, W. J.; Li, X. D.; Zhang, Z. X.; Fu, J. C.; Zhao, C. H.; Xie, E. Q. Freestanding three-dimensional graphene/MnO2 composite networks as ultralight and flexible supercapacitor electrodes. ACS Nano 2013, 7, 174–182.

8

Choi, B. G.; Yang, M. H.; Hong, W. H.; Choi, J. W.; Huh, Y. S. 3D macroporous graphene frameworks for supercapacitors with high energy and power densities. ACS Nano 2012, 6, 4020–4028.

9

Li, X. M.; Zhao, T. S.; Wang, K. L.; Yang, Y.; Wei, J. Q.; Kang, F. Y.; Wu, D. H.; Zhu, H. W. Directly drawing self-assembled, porous, and monolithic graphene fiber from chemical vapor deposition grown graphene film and its electrochemical properties. Langmuir 2011, 27, 12164–12171.

10

Meng, Y. N.; Zhao, Y.; Hu, C. G.; Cheng, H. H.; Hu, Y.; Zhang, Z. P.; Shi, G. Q.; Qu, L. T. All-graphene core-sheath microfibers for all-solid-state, stretchable fibriform supercapacitors and wearable electronic textiles. Adv. Mater. 2013, 25, 2326–2331.

11

Qian, X. F.; Lv, Y. Y.; Li, W.; Xia, Y. Y.; Zhao, D. Y. Multiwall carbon nanotube@mesoporous carbon with core–shell configuration: A well-designed composite-structure toward electrochemical capacitor application. J. Mater. Chem. 2011, 21, 13025–13031.

12

Jha, N.; Ramesh, P.; Bekyarova, E.; Itkis, M. E.; Haddon, R. C. High energy density supercapacitor based on a hybrid carbon nanotube-reduced graphite oxide architecture. Adv. Energy Mater. 2012, 2, 438–444.

13

Liu, C. G.; Yu, Z. N.; Neff, D.; Zhamu, A.; Jang, B. Z. Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett. 2010, 10, 4863–4868.

14

Yu, G. H.; Hu, L. B.; Liu, N.; Wang, H. L.; Vosgueritchian, M.; Yang, Y.; Cui, Y.; Bao, Z. N. Enhancing the supercapacitor performance of graphene/MnO2 nanostructured electrodes by conductive wrapping. Nano Lett. 2011, 11, 4438–4442.

15

Kim, T. Y.; Lee, H. W.; Stoller, M.; Dreyer, D. R.; Bielawski, C. W.; Ruoff, R. S.; Suh, K. S. High-performance supercapacitors based on poly(ionic liquid)-modified graphene electrodes. ACS Nano 2011, 5, 436–442.

16

Yu, C. J.; Masarapu, C.; Rong, J. P.; Wei, B. Q.; Jiang, H. Q. Stretchable supercapacitors based on buckled single-walled carbon-nanotube macrofilms. Adv. Mater. 2009, 21, 4793–4797.

17

Niu, Z. Q.; Dong, H. B.; Zhu, B. W.; Li, J. Z.; Hng, H. H.; Zhou, W. Y.; Chen, X. D.; Xie, S. S. Highly stretchable, integrated supercapacitors based on single-walled carbon nanotube films with continuous reticulate architecture. Adv. Mater. 2013, 25, 1058–1064.

18

El-Kady, M. F.; Strong, V.; Dubin, S.; Kaner, R. B. Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 2012, 335, 1326–1330.

19

Xu, Y. X.; Lin, Z. Y.; Huang, X. Q.; Liu, Y.; Huang, Y.; Duan, X. F. Flexible solid-state supercapacitors based on three- dimensional graphene hydrogel films. ACS Nano 2013, 7, 4042–4049.

20

Zhao, Y.; Liu, J.; Hu, Y.; Cheng, H. H.; Hu, C. G.; Jiang, C. C.; Jiang, L.; Cao, A. Y.; Qu, L. T. Highly compression- tolerant supercapacitor based on polypyrrole-mediated graphene foam electrodes. Adv. Mater. 2013, 25, 591–595.

21

Gui, X. C.; Wei, J. Q.; Wang, K. L.; Cao, A. Y.; Zhu, H. W.; Jia, Y.; Shu, Q. K.; Wu, D. H. Carbon nanotube sponges. Adv. Mater. 2010, 22, 617–621.

22

Li, P. X.; Kong, C. Y.; Shang, Y. Y.; Shi, E. Z.; Yu, Y. T.; Qian, W. Z.; Wei, F.; Wei, J. Q.; Wang, K. L.; Zhu, H. W., et al. Highly deformation-tolerant carbon nanotube sponges as supercapacitor electrodes. Nanoscale 2013, 5, 8472–8479.

23

Feng, W.; Bai, X. D.; Lian, Y. Q.; Liang, J.; Wang, X. G.; Yoshino, K. Well-aligned polyaniline/carbon-nanotube composite films grown by in-situ aniline polymerization. Carbon 2003, 41, 1551–1557.

24

Lota, K.; Khomenko, V.; Frackowiak, E. Capacitance properties of poly(3, 4-ethylenedioxythiophene)/carbon nanotubes composites. J. Phys. Chem. Solids 2004, 65, 295–301.

25

Hu, Y.; Zhao, Y.; Li, Y.; Li, H.; Shao, H. B.; Qu, L. T. Defective super-long carbon nanotubes and polypyrrole composite for high-performance supercapacitor electrodes. Electrochimi. Acta 2012, 66, 279–286.

26

Cong, H. P.; Ren, X. C.; Wang, P.; Yu, S. H. Flexible graphene-polyaniline composite paper for high-performance supercapacitor. Energy Environ. Sci. 2013, 6, 1185–1191.

File
nr-7-2-209_ESM.pdf (934.6 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 19 October 2013
Revised: 08 November 2013
Accepted: 12 November 2013
Published: 14 December 2013
Issue date: February 2014

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2013

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC, No. 91127004) and the Beijing City Science and Technology Program (No. Z121100001312005).

Return