Journal Home > Volume 7 , Issue 1

Harvesting solar energy to produce clean hydrogen from photoelectrolysis of water presents a valuable opportunity to find alternatives for fossil fuels. Three-dimensional nanoarchitecturing techniques can afford enhanced photoelectrochemical properties by improving geometrical and structural effects. Here, we report quantum-dot sensitized TiO2–Sb: SnO2 heterostructures as a model electrode to enable the optimization of the structural effects through the creation of a highly conductive pathway using a transparent conducting oxide (TCO), coupled with a high surface area, by introducing branching and low interfacial resistance via an epitaxial relationship. An examination of various morphologies (dot, rod, and lamella shape) of TiO2 reveals that the rod-shaped TiO2–Sb: SnO2 is a more effective structure than the others. A photoelectrode fabricated using optimized CdS–TiO2–Sb: SnO2 produces a photocurrent density of 7.75 mA/cm2 at 0.4 V versus a reversible hydrogen electrode. These results demonstrate that constructing a branched heterostructure based on TCO can realize high-performance photoelectrochemical devices.

File
nr-7-1-144_ESM.pdf (893.1 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 05 August 2013
Revised: 28 September 2013
Accepted: 04 November 2013
Published: 04 December 2013
Issue date: January 2014

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2013

Acknowledgements

Acknowledgements

This work was supported by the National Research Foundation (NRF) grant funded by the Republic of Korea government (MEST) (2012-0008669 (RIAM), 2012R1A2A2A01045382, and 2009-0094046). This work was also supported by the Global Frontier R & D Program on Center for Multiscale Energy System funded by the National Research Foundation under the Ministry of Education, Science and Technology, Republic of Korea (0420-20110156).

Return