Journal Home > Volume 7 , Issue 1

One of the primary aims of the actinide community within nanoscience is to develop a good understanding similar to what is currently the case for stable elements. As a consequence, efficient, reliable and versatile synthesis techniques dedicated to the formation of new actinide-based nano-objects (e.g., nanocrystals) are necessary. Hence, a "library" dedicated to the preparation of various actinide-based nanoscale building blocks is currently being developed. Nanoscale building blocks with tunable sizes, shapes and compositions are of prime importance. So far, the non-aqueous synthesis method in highly coordinating organic media is the only approach which has demonstrated the capability to provide size and shape control of actinide-based nanocrystals (both for thorium and uranium, and recently extended to neptunium and plutonium). In this paper, we demonstrate that the non-aqueous approach is also well adapted to control the chemical composition of the nanocrystals obtained when mixing two different actinides. Indeed, the controlled hot co-injection of thorium acetylacetonate and uranyl acetate (together with additional capping agents) into benzyl ether can be used to synthesize thorium/uranium mixed oxide nanocrystals covering the full compositional spectrum. Additionally, we found that both size and shape are modified as a function of the thorium: uranium ratio. Finally, the magnetic properties of the different thorium/uranium mixed oxide nanocrystals were investigated. Contrary to several reports, we did not observe any ferromagnetic behavior. As a consequence, ferromagnetism cannot be described as a universal feature of nanocrystals of non-magnetic oxides as recently claimed in the literature.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Thorium/uranium mixed oxide nanocrystals: Synthesis, structural characterization and magnetic properties

Show Author's information Damien Hudry1( )Jean-Christophe Griveau1( )Christos Apostolidis1Olaf Walter1,6Eric Colineau1Gert Rasmussen1Di Wang2,3Venkata Sai Kiran Chakravadhaluna2,4Eglantine Courtois2Christian Kübel2,3Daniel Meyer5
European Commission: Joint Research Centre Institute for Transuranium ElementsP. O. Box 2340 76125 Karlsruhe Germany
Karlsruhe Institute of Technology Institute of NanotechnologyHermann-von-Helmholtz-Platz 176344 Eggenstein-Leopoldshafen Germany
Karlsruhe Institute of Technology Karlsruhe Nano Micro FacilityHermann-von-Helmholtz-Platz 176344 Eggenstein-Leopoldshafen Germany
Helmholtz Institute Ulm for Electrochemical Energy StorageAlbert-Einstein-Allee 1189069 Ulm Germany
Institut de Chimie Séparative de MarcouleUMR 5257, BP 1717130207 Bagnols sur Cèze Cedex France
Karlsruhe Institute of Technology Institute for Catalysis Research and TechnologyHermann-von-Helmholtz-Platz 176344 Eggenstein-Leopoldshafen Germany

Abstract

One of the primary aims of the actinide community within nanoscience is to develop a good understanding similar to what is currently the case for stable elements. As a consequence, efficient, reliable and versatile synthesis techniques dedicated to the formation of new actinide-based nano-objects (e.g., nanocrystals) are necessary. Hence, a "library" dedicated to the preparation of various actinide-based nanoscale building blocks is currently being developed. Nanoscale building blocks with tunable sizes, shapes and compositions are of prime importance. So far, the non-aqueous synthesis method in highly coordinating organic media is the only approach which has demonstrated the capability to provide size and shape control of actinide-based nanocrystals (both for thorium and uranium, and recently extended to neptunium and plutonium). In this paper, we demonstrate that the non-aqueous approach is also well adapted to control the chemical composition of the nanocrystals obtained when mixing two different actinides. Indeed, the controlled hot co-injection of thorium acetylacetonate and uranyl acetate (together with additional capping agents) into benzyl ether can be used to synthesize thorium/uranium mixed oxide nanocrystals covering the full compositional spectrum. Additionally, we found that both size and shape are modified as a function of the thorium: uranium ratio. Finally, the magnetic properties of the different thorium/uranium mixed oxide nanocrystals were investigated. Contrary to several reports, we did not observe any ferromagnetic behavior. As a consequence, ferromagnetism cannot be described as a universal feature of nanocrystals of non-magnetic oxides as recently claimed in the literature.

Keywords: nanocrystal, nanoparticle, magnetism, uranium, thorium, mixed oxide, non-aqueous synthesis

References(59)

1

Hodes, G. When small is different: Some recent advances in concepts and applications of nanoscale phenomena. Adv. Mater. 2007, 19, 639–655.

2

El-Sayed, M. A. Small is different: Shape-, size-, and composition-dependent properties of some colloidal semiconductor nanocrystals. Acc. Chem. Res. 2004, 37, 326–333.

3

Alivisatos, A. P. Nanocrystals: Building blocks for modern materials design. Endeavour 1997, 21, 56–60.

4

Goesmann, H.; Feldmann, C. Nanoparticulate functional materials. Angew. Chem., Int. Ed. 2010, 49, 1362–1395.

5

Peng, X. An essay on synthetic chemistry of colloidal nanocrystals. Nano Res. 2009, 2, 425–447.

6

Talapin, D. V.; Lee, J. S.; Kovalenko, M. V.; Shevchenko, E. V. Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem. Rev. 2010, 110, 389–458.

7

Semonin, O. E.; Luther, J. M.; Beard, M. C. Quantum dots for next-generation photovoltaics. Mater. Today 2012, 15, 508–515.

8

Lohse, S. E.; Murphy, C. J. Applications of colloidal inorganic nanoparticles: From medicine to energy. J. Am. Chem. Soc. 2012, 134, 15607–15620.

9

Lee, D. C.; Smith, D. K.; Heitsch, A. T.; Korgel, B. A. Colloidal magnetic nanocrystals: Synthesis, properties and applications. Annu. Rep. Prog. Chem. C 2007, 103, 351–402.

10

Reddy, L. H.; Arias, J. L.; Nicolas, J.; Couvreur, P. Magnetic nanoparticles: Design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chem. Rev. 2012, 112, 5818–5878.

11

Wang, X.; Yang, L.; Chen, Z.; Shin, D. M. Application of nanotechnology in cancer therapy and imaging. CA Cancer J. Clin. 2008, 58, 97–110.

12

Bouzigues, C.; Gacoin, T.; Alexandrou, A. Biological applications of rare-earth based nanoparticles. ACS Nano 2011, 5, 8488–8505.

13

Kwon, S. G.; Hyeon, T. Colloidal chemical synthesis and formation kinetics of uniformly sized nanocrystals of metals, oxides, and chalcogenides. Acc. Chem. Res. 2008, 41, 1696–1709.

14

Park, J.; Joo, J.; Kwon, S. G.; Jang, Y.; Hyeon, T. Synthesis of monodisperse spherical nanocrystals. Angew. Chem., Int. Ed. 2007, 46, 4630–4660.

15

Rao, C. N. R.; Vivekchand, S. R. C.; Biswasa, K.; Govindaraja, A. Synthesis of inorganic nanomaterials. Dalton Trans. 2007, 3728–3749.

16

Jun, Y. W.; Choi, J. S.; Cheon, J. Shape control of semiconductor and metal oxide nanocrystals through nonhydrolytic colloidal routes. Angew. Chem., Int. Ed. 2006, 45, 3414–3439.

17

Jun, Y. W.; Lee, J. H.; Choi, J. S.; Cheon, J. Symmetry-controlled colloidal nanocrystals: Nonhydrolytic chemical synthesis and shape determining parameters. J. Phys. Chem. B 2005, 109, 14795–14806.

18

Dong, A.; Chen, J.; Vora, P. M.; Kikkawa, J. M.; Murray, C. B. Binary nanocrystal superlattice membranes self-assembled at the liquid-air interface. Nature 2010, 466, 474–477.

19

Rogach, A. L.; Talapin, D. V.; Shevchenko, E. V.; Kornowski, A.; Haase, M.; Weller, H. Organization of matter on different size scales: Monodisperse nanocrystals and their superstructures. Adv. Funct. Mater. 2002, 12, 653–664.

DOI
20

Levchenko, T. I.; Kübel, C.; Huang, Y.; Corrigan, J. F. From molecule to materials: Crystalline superlattices of nanoscopic CdS clusters. Chem. Eur. J. 2011, 17, 14394– 14398.

21

Buonsanti, R.; Milliron, D. J. Chemistry of doped colloidal nanocrystals. Chem. Mater. 2013, 25, 1305–1317.

22

Norris, D. J.; Efros, A. L.; Erwin, S. C. Doped nanocrystals. Science 2008, 319, 1776–1779.

23

Bryan, J. D.; Gamelin, D. R. Doped semiconductor nanocrystals: Synthesis, characterization, physical properties, and applications. Prog. Inorg. Chem. 2005, 54, 47–126.

24

Erwin, S. C.; Zu, L.; Haftel, M. I.; Efros, A. L.; Kennedy, T. A.; Norris, D. J. Doping semiconductor nanocrystals. Nature 2005, 436, 91–94.

25

Shi, W. -Q.; Yuan, L. Y.; Li, Z. J.; Lan, J. H.; Zhao, Y. L.; Chai, Z. -F. Nanomaterials and nanotechnologies in nuclear energy chemistry. Radiochim. Acta 2012, 100, 727–736.

26

Tsivadze, A. Y.; Ionova, G. V.; Mikhalko, V. K. Nanochemistry and supramolecular chemistry of actinides and lanthanides: Problems and prospects. Prot. Met. Phys. Chem. Surf. 2010, 46, 149–169.

27

Wilson, R. E.; Skanthakumar, S.; Soderholm, L. Separation of plutonium oxide nanoparticles and colloids. Angew. Chem., Int. Ed. 2011, 50, 11234–11237.

28

Biswas, B.; Mougel, V.; Pécaut, J.; Mazzanti, M. Base-driven assembly of large uranium oxo/hydroxo clusters. Angew. Chem., Int. Ed. 2011, 50, 5745–5748.

29

Ling, J.; Qiu, J.; Sigmon, G. E.; Ward, M.; Szymanowski, J. E. S.; Burns, P. C. Uranium pyrophosphate/methylenediphosphonate polyoxometalate cage clusters. J. Am. Chem. Soc. 2010, 132, 13395–13402.

30

Soderholm, L.; Almond, P. M.; Skanthakumar, S.; Wilson, R. E.; Burns, P. C. The structure of the plutonium oxide nanocluster [Pu38O 56Cl54(H2O)8]14. Angew. Chem., Int. Ed. 2008, 47, 298–302.

31

Burns, P. C.; Kubatko, K. A.; Sigmon, G.; Fryer, B. J.; Gagnon, J. E.; Antonio, M. R.; Soderholm, L. Actinyl peroxide nanospheres. Angew. Chem., Int. Ed. 2005, 44, 2135–2139.

32

Rousseau, G.; Fattahi, M.; Grambow, B.; Desgranges, L.; Boucher, F.; Ouvrard, G.; Millot, N.; Niepce, J. C. Synthesis and characterization of nanometric powders of UO2+x, (Th, U)O2+x and (La, U)O2+x. J. Solid State Chem. 2009, 182, 2591–2597.

33

Wang, Q.; Li, G. D.; Xu, S.; Li, J. X.; Chen, J. S. Synthesis of uranium oxide nanoparticles and their catalytic performance for benzyl alcohol conversion to benzaldehyde. J. Mater. Chem. 2008, 18, 1146–1152.

34

Kumar, D.; Dey, G. K.; Gupta, N. M. Nanoparticles of uranium oxide occluded in MCM-41 silica host: Influence of synthesis condition on the size and the chemisorption behavior. Phys. Chem. Chem. Phys. 2003, 5, 5477–5484.

35

Zhang, Z. T.; Konduru, M.; Dai, S.; Overbury, S. H. Uniform formation of uranium oxide nanocrystals inside ordered mesoporous hosts and their potential applications as oxidative catalysts. Chem. Commun. 2002, 2406–2407.

36

Wu, H. M.; Yang, Y. G.; Cao, Y. C. Synthesis of colloidal uranium-dioxide nanocrystals. J. Am. Chem. Soc. 2006, 128, 16522–16523.

37

Hudry, D.; Apostolidis, C.; Walter, O.; Gouder, T.; Courtois, E.; Kübel, C.; Meyer, D. Non-aqueous synthesis of isotropic and anisotropic actinide oxide nanocrystals. Chem. Eur. J. 2012, 18, 8283–8287.

38

Hudry, D.; Apostolidis, C.; Walter, O.; Gouder, T.; Janssen, A.; Courtois, E.; Kübel, C.; Meyer, D. Synthesis of transuranium-based nanocrystals via the thermal decomposition of actinyl nitrates. RSC Adv. 2013, 3, 18271–18274.

39

Novikov, A. P.; Kalmykov, S. N.; Utsunomiya, S.; Ewing, R. C.; Horreard, F. O.; Merkulov, A.; Clark, S. B.; Tkachev, V. V.; Myasoedov, B. F. Colloid transport of plutonium in the far-field of the Mayak Production Association, Russia. Science 2006, 314, 638–641.

40

Kersting, A. B.; Efurd, D. W.; Finnegan, D. L.; Rokop, D. J.; Smith, D. K.; Thompson, J. L. Migration of plutonium in ground water at the Nevada Test Site. Nature 1999, 397, 56–59.

41

Nenoff, T. M.; Jacobs, B. W.; Robinson, D. B.; Provencio, P. P.; Huang, J.; Ferreira, S.; Hanson, D. J. Synthesis and low temperature in situ sintering of uranium oxide nanoparticles. Chem. Mater. 2011, 23, 5185–5190.

42

McLaughlin, M. F.; Woodward, J.; Boll, R. A.; Wall, J. S.; Rondinone, A. J.; Kennel, S. J.; Mirzadeh, S.; Robertson, J. D. Gold coated lanthanide phosphate nanoparticles for targeted alpha generator radiotherapy. PLoS One 2013, 8, e54531.

43

Kim, Y. S.; Brechbiel, M. W. An overview of targeted alpha therapy. Tumor Biol. 2012, 33, 573–590.

44

Durakiewicz, T.; Joyce, J. J.; Wills, J. M.; Batista, C. D. Notes on the dual nature of 5f electrons. J. Phys. Soc. Jpn. 2006, 75, 39–40.

45

Lander, G. H. Physics—Sensing electrons on the edge. Science 2003, 301, 1057–1058.

46

Kwon, S. G.; Hyeon, T. Formation mechanisms of uniform nanocrystals via hot-injection and heat-up methods. Small 2011, 7, 2685–2702.

47

Donega, C. D.; Liljeroth, P.; Vanmaekelbergh, D. Physicochemical evaluation of the hot-injection method, a synthesis route for monodisperse nanocrystals. Small 2005, 1, 1152–1162.

48

Sundaresan, A.; Rao, C. N. R. Ferromagnetism as a universal feature of inorganic nanoparticles. Nano Today 2009, 4, 96–106.

49

Sundaresan, A.; Bhargavi, R.; Rangarajan, N.; Siddesh, U.; Rao, C. N. R. Ferromagnetism as a universal feature of nanoparticles of the otherwise nonmagnetic oxides. Phys. Rev. B 2006, 74, 161306.

50

Hudry, D.; Apostolidis, C.; Walter, O.; Gouder, T.; Courtois, E.; Kübel, C.; Meyer, D. Controlled synthesis of thorium and uranium oxide nanocrystals. Chem. Eur. J. 2013, 19, 5297–5305.

51

Reiss, P.; Protière, M.; Li, L. Core/shell semiconductor nanocrystals. Small 2009, 5, 154–168.

52

Cheary, R. W.; Coelho, A. A. Axial divergence in a conventional X-ray powder diffractometer. I. Theoretical foundations. J. Appl. Crystallogr. 1998, 31, 851–861.

53

Narayanaswamy, A.; Xu, H. F.; Pradhan, N.; Kim, M.; Peng, X. G. Formation of nearly monodisperse In2O3 nanodots and oriented-attached nanoflowers: Hydrolysis and alcoholysis vs. pyrolysis. J. Am. Chem. Soc. 2006, 128, 10310–10319.

54

Yang, Y. F.; Jin, Y. Z.; He, H. P.; Wang, Q. L.; Tu, Y.; Lu, H. M.; Ye, Z. Z. Dopant-induced shape evolution of colloidal nanocrystals: The case of zinc oxide. J. Am. Chem. Soc. 2010, 132, 13381–13394.

55

Slowinski, E.; Elliott, N. Lattice constants and magnetic susceptibilities of solid solutions of uranium and thorium dioxide. Acta Cryst. 1952, 5, 768–770.

56

Sundaresan, A.; Rao, C. N. R. Implications and consequences of ferromagnetism universally exhibited by inorganic nanoparticles. Solid State Commun. 2009, 149, 1197–1200.

57

Coey, J. M. D. Dilute magnetic oxides. Curr. Opin. Solid State Mater. Sci. 2006, 10, 83–92.

58

Yamamoto, Y.; Miura, T.; Suzuki, M.; Kawamura, N.; Miyagawa, H.; Nakamura, T.; Kobayashi, K.; Teranishi, T.; Hori, H. Direct observation of ferromagnetic spin polarization in gold nanoparticles. Phys. Rev. Lett. 2004, 93, 116801.

59

Das Pemmaraju, C.; Sanvito, S. Ferromagnetism driven by intrinsic point defects in HfO2. Phys. Rev. Lett. 2005, 94, 217205.

File
nr-7-1-119_ESM.pdf (2.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 30 July 2013
Revised: 10 October 2013
Accepted: 18 October 2013
Published: 11 November 2013
Issue date: January 2014

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2013

Acknowledgements

Acknowledgements

This work was partially carried out with the support of the Karlsruhe Nano Micro Facility (KNMF, www.knmf.kit.edu) a large-scale research infrastructure of the Helmholtz Society at the Karlsruhe Institute of Technology (KIT, www.kit.edu). Daniel Bouexiere is acknowledged for his help with powder X-ray diffraction measurements performed in a dedicated glove-box for radioactive samples.

Return