Journal Home > Volume 7 , Issue 1

The performance of the lithium-ion cell is heavily dependent on the ability of the host electrodes to accommodate and release Li+ ions from the local structure. While the choice of electrode materials may define parameters such as cell potential and capacity, the process of intercalation may be physically limited by the rate of solid-state Li+ diffusion. Increased diffusion rates in lithium-ion electrodes may be achieved through a reduction in the diffusion path, accomplished by a scaling of the respective electrode dimensions. In addition, some electrodes may undergo large volume changes associated with charging and discharging, the strain of which, may be better accommodated through nanostructuring. Failure of the host to accommodate such volume changes may lead to pulverisation of the local structure and a rapid loss of capacity. In this review article, we seek to highlight a number of significant gains in the development of nanostructured lithium-ion battery architectures (both anode and cathode), as drivers of potential next-generation electrochemical energy storage devices.


menu
Abstract
Full text
Outline
About this article

Evaluating the performance of nanostructured materials as lithium-ion battery electrodes

Show Author's information Mark J. Armstrong1Colm O'Dwyer2William J. Macklin4Justin D. Holmes1,3( )
Materials Chemistry & Analysis GroupDepartment of Chemistry and the Tyndall National InstituteUniversity College CorkCorkIreland
Applied Nanoscience Group Department of Chemistry and the Tyndall National Institute University College CorkCorkIreland
Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) Trinity College DublinDublin 2Ireland
Nexeon Limited AbingdonOxfordshireUK

Abstract

The performance of the lithium-ion cell is heavily dependent on the ability of the host electrodes to accommodate and release Li+ ions from the local structure. While the choice of electrode materials may define parameters such as cell potential and capacity, the process of intercalation may be physically limited by the rate of solid-state Li+ diffusion. Increased diffusion rates in lithium-ion electrodes may be achieved through a reduction in the diffusion path, accomplished by a scaling of the respective electrode dimensions. In addition, some electrodes may undergo large volume changes associated with charging and discharging, the strain of which, may be better accommodated through nanostructuring. Failure of the host to accommodate such volume changes may lead to pulverisation of the local structure and a rapid loss of capacity. In this review article, we seek to highlight a number of significant gains in the development of nanostructured lithium-ion battery architectures (both anode and cathode), as drivers of potential next-generation electrochemical energy storage devices.

Keywords: lithium ion batteries, nanostructuring, anodes, cathodes

References(527)

1

Armand, M.; Tarascon, J. -M. Building better batteries. Nature 2008, 451, 652–657.

2

Stein, A. Energy storage: Batteries take charge. Nat. Nanotechnol. 2011, 6, 262–263.

3

Goodenough, J. B.; Kim, Y. Challenges for rechargeable Li batteries. Chem. Mater. 2010, 22, 587–603.

4

Bruce, P. G.; Scrosati, B.; Tarascon, J. -M. Nanomaterials for rechargeable lithium batteries. Angew. Chem. Int. Ed. 2008, 47, 2930–2946.

5

Aricò, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J. -M.; van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 2005, 4, 366–377.

6

Song, M. -K.; Park, S.; Alamgir, F. M.; Cho, J.; Liu, M. L. Nanostructured electrodes for lithium-ion and lithium-air batteries: The latest developments, challenges, and perspectives. Mat. Sci. Eng. R 2011, 72, 203–252.

7

Aricò, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J. -M.; van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 2005, 4, 366–377.

8

Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D. Challenges in the development of advanced Li-ion batteries: A review. Energy Environ. Sci. 2011, 4, 3243–3262.

9

Tiwari, J. N.; Tiwari, R. N.; Kim, K. S. Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices. Prog. Mater. Sci. 2012, 57, 724–803.

10

Szczech, J. R.; Jin, S. Nanostructured silicon for high capacity lithium battery anodes. Energy Environ. Sci. 2011, 4, 56–72.

11

Kasavajjula, U.; Wang, C. S.; Appleby, A. J. Nano-and bulk-silicon-based insertion anodes for lithium-ion secondary cells. J. Power Sources 2007, 163, 1003–1039.

12

Chan, C. K.; Ruffo, R.; Hong, S. S.; Huggins, R. A.; Cui, Y. Structural and electrochemical study of the reaction of lithium with silicon nanowires. J. Power Sources 2009, 189, 34–39.

13

Li, J.; Dahn, J. R. An in situ X-ray diffraction study of the reaction of Li with crystalline Si. J. Electrochem. Soc. 2007, 154, A156–A161.

14

Kang, Y. -M.; Lee, S. -M.; Kim, S. -J.; Jeong, G. -J.; Sung, M. -S.; Choi, W. -U.; Kim, S. -S. Phase transitions explanatory of the electrochemical degradation mechanism of Si based materials. Electrochem. Commun. 2007, 9, 959–964.

15

Beattie, S. D.; Larcher, D.; Morcrette, M.; Simon, B.; Tarascon, J. -M. Si electrodes for Li-ion batteries—A new way to look at an old problem. J. Electrochem. Soc. 2008, 155, A158–A163.

16

Liu, X. H.; Zheng, H.; Zhong, L.; Huang, S.; Karki, K.; Zhang, L. Q.; Liu, Y.; Kushima, A.; Liang, W. T.; Wang, J. W.; et al. Anisotropic swelling and fracture of silicon nanowires during lithiation. Nano Lett. 2011, 11, 3312–3318.

17

Zhang, Q. F.; Zhang, W. X.; Wan, W. H.; Cui, Y.; Wang, E. G. Lithium insertion in silicon nanowires: An ab initio study. Nano Lett. 2010, 10, 3243–3249.

18

Sethuraman, V. A.; Chon, M. J.; Shimshak, M.; Srinivasan, V.; Guduru, P. R. In situ measurements of stress evolution in silicon thin films during electrochemical lithiation and delithiation. J. Power Sources 2010, 195, 5062–5066.

19

Barth, S.; Hernandez-Ramirez, F.; Holmes, J. D.; Romano-Rodriguez, A. Synthesis and applications of one-dimensional semiconductors. Prog. Mater. Sci. 2010, 55, 563–627.

20

Green, M.; Fielder, E.; Scrosati, B.; Wachtler, M.; Moreno, J. S. Structured silicon anodes for lithium battery applications. Electrochem. Solid-State Lett. 2003, 6, A75–A79.

21

Yang, H.; Huang, S.; Huang, X.; Fan, F. F.; Liang, W. T.; Liu, X. H.; Chen, L. -Q.; Huang, J. Y.; Li, J.; Zhu, T.; et al. Orientation-dependent interfacial mobility governs the anisotropic swelling in lithiated silicon nanowires. Nano Lett. 2012, 12, 1953–1958.

22

Chan, C. K.; Peng, H. L.; Liu, G.; McIlwrath, K.; Zhang, X. F.; Huggins, R. A; Cui, Y. High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 2008, 3, 31–35.

23

Laik, B.; Eude, L.; Pereira-Ramos, J. -P.; Cojocaru, C. S.; Pribat, D.; Rouvière, E. Silicon nanowires as negative electrode for lithium-ion microbatteries. Electrochim. Acta 2008, 53, 5528–5532.

24

Kang, K.; Lee, H. -S.; Han, D. -W.; Kim, G. -S.; Lee, D.; Lee, G.; Kang, Y. -M.; Jo, M. -H. Maximum Li storage in Si nanowires for the high capacity three-dimensional Li-ion battery. Appl. Phys. Lett. 2010, 96, 053110.

25

Ruffo, R.; Hong, S. S.; Chan, C. K.; Huggins, R. A.; Cui, Y. Impedance analysis of silicon nanowire lithium ion battery anodes. J. Phys. Chem. C 2009, 113, 11390–11398.

26

Peng, K. Q.; Jie, J. S.; Zhang, W. J.; Lee, S. -T. Silicon nanowires for rechargeable lithium-ion battery anodes. Appl. Phys. Lett. 2008, 93, 033105.

27

Nguyen, H. T.; Yao, F.; Zamfir, M. R.; Biswas, C.; So, K. P.; Lee, Y. H.; Kim, S. M.; Cha, S. N.; Kim, J. M.; Pribat, D. Highly interconnected Si nanowires for improved stability Li-ion battery anodes. Adv. Energy Mater. 2011, 1, 1154– 1161.

28

Loveridge, M.; Lain, M.; Liu, F.; Coowar, F.; Macklin, B.; Green, M. High performance silicon anode materials for next generation lithium ion batteries. Abstract #12 The 15th International Meeting on Lithium Batteries. The Electrochemical Society 2010.

29

Liu, F.; Lain, M.; Loveridge, M.; Coowar, F.; Macklin, B.; Green, M. Low cost silicon fibres For lithium ion batteries. Abstract #47 The 15th International Meeting on Lithium Batteries. The Electrochemical Society 2010.

30

Huang, R.; Fan, X.; Shen, W. C.; Zhu, J. Carbon-coated silicon nanowire array films for high-performance lithium-ion battery anodes. Appl. Phys. Lett. 2009, 95, 133119.

31

Ji, L. W.; Zhang, X. W. Fabrication of porous carbon/Si composite nanofibers as high-capacity battery electrodes. Electrochem. Commun. 2009, 11, 1146–1149.

32

Kim, H.; Cho, J. Superior lithium electroactive mesoporous Si@carbon core–shell nanowires for lithium battery anode material. Nano Lett. 2008, 8, 3688–3691.

33

Chan, C. K.; Patel, R. N.; O'Connell, M. J.; Korgel, B. A.; Cui, Y. Solution-grown silicon nanowires for lithium-ion battery anodes. ACS Nano 2010, 4, 1443–1450.

34

Cui, L. -F.; Ruffo, R.; Chan, C. K.; Peng, H. L.; Cui, Y. Crystalline-amorphous core–shell silicon nanowires for high capacity and high current battery electrodes. Nano Lett. 2009, 9, 491–495.

35

Yao, Y.; Liu, N.; McDowell, M. T.; Pasta, M.; Cui, Y. Improving the cycling stability of silicon nanowire anodes with conducting polymer coatings. Energy Environ. Sci. 2012, 5, 7927–7930.

36

McDowell, M. T.; Lee, S. W.; Ryu, I.; Wu, H.; Nix, W. D.; Choi, J. W.; Cui, Y. Novel size and surface oxide effects in silicon nanowires as lithium battery anodes. Nano Lett. 2011, 11, 4018–4025.

37

Ge, M. Y.; Rong, J. P.; Fang, X.; Zhou, C. W. Porous doped silicon nanowires for lithium ion battery anode with long cycle life. Nano Lett. 2012, 12, 2318–2323.

38

Park, M. -H.; Kim, M. G.; Joo, J.; Kim, K.; Kim, J.; Ahn, S.; Cui, Y.; Cho, J. Silicon nanotube battery anodes. Nano Lett. 2009, 9, 3844–3847.

39

Song, T.; Xia, J. L.; Lee, J. -H.; Lee, D. H.; Kwon, M. -S.; Choi, J. -M.; Wu, J.; Doo, S. K.; Chang, H.; Park, W. I.; et al. Arrays of sealed silicon nanotubes as anodes for lithium ion batteries. Nano Lett. 2010, 10, 1710–1716.

40

Chou, S. -L.; Wang, J. -Z.; Choucair, M.; Liu, H. -K.; Stride, J. A.; Dou, S. -X. Enhanced reversible lithium storage in a nanosize silicon/graphene composite. Electrochem. Commun. 2010, 12, 303–306.

41

Kim, H.; Seo, M.; Park, M. -H.; Cho, J. A critical size of silicon nano-anodes for lithium rechargeable batteries. Angew. Chem. Int. Ed. 2010, 49, 2146–2149.

42

Ma, H.; Cheng, F.; Chen, J. -Y.; Zhao, J. -Z.; Li, C. -S.; Tao, Z. -L.; Liang, J. Nest-like silicon nanospheres for high-capacity lithium storage. Adv. Mater. 2007, 19, 4067–4070.

43

Yao, Y.; McDowell, M. T.; Ryu, I.; Wu, H.; Liu, N.; Hu, L. B.; Nix, W. D.; Cui, Y. Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life. Nano Lett. 2011, 11, 2949–2954.

44

Magasinski, A.; Dixon, P.; Hertzberg, B.; Kvit, A.; Ayala, J.; Yushin, G. High-performance lithium-ion anodes using a hierarchical bottom-up approach. Nat. Mater. 2010, 9, 353–358.

45

Ding, N.; Xu, J.; Yao, Y. X.; Wegner, G.; Lieberwirth, I.; Chen, C. H. Improvement of cyclability of Si as anode for Li-ion batteries. J. Power Sources 2009, 192, 644–651.

46

Lee, J. K.; Smith, K. B.; Hayner, C. M.; Kung, H. H. Silicon nanoparticles-graphene paper composites for Li ion battery anodes. Chem. Commun. 2010, 46, 2025–2027.

47

Hu, Y. -S.; Demir-Cakan, R.; Titirici, M. -M.; Müller, J. -O.; Schlögl, R.; Antonietti, M.; Maier, J. Superior storage performance of a Si@SiOx/C nanocomposite as anode material for lithium-ion batteries. Angew. Chem. Int. Ed. 2008, 47, 1645–1649.

48

Wang, W.; Kumta, P. N. Nanostructured hybrid silicon/carbon nanotube heterostructures: Reversible high-capacity lithium-ion anodes. ACS Nano 2010, 4, 2233–2241.

49

Kim, H.; Han, B.; Choo, J.; Cho, J. Three-dimensional porous silicon particles for use in high-performance lithium secondary batteries. Angew. Chem. Int. Ed. 2008, 47, 10151–10154.

50

Zheng, Y.; Yang, J.; Wang, J. L.; NuLi, Y. N. Nano-porous Si/C composites for anode material of lithium-ion batteries. Electrochim. Acta 2007, 52, 5863–5867.

51

Jiang, T.; Zhang, S. C.; Qiu, X. P.; Zhu, W. T.; Chen, L. Q. Preparation and characterization of silicon-based three-dimensional cellular anode for lithium ion battery. Electrochem. Commun. 2007, 9, 930–934.

52

Kovalenko, I.; Zdyrko, B.; Magasinski, A.; Hertzberg, B.; Milicev, Z.; Burtovyy, R.; Luzinov, I.; Yushin, G. A major constituent of brown algae for use in high-capacity Li-ion batteries. Science 2011, 334, 75–79.

53

Chan, C. K.; Zhang, X. F.; Cui, Y. High capacity Li ion battery anodes using Ge nanowires. Nano Lett. 2008, 8, 307–309.

54

Graetz, J.; Ahn, C. C.; Yazami, R.; Fultz, B. Nanocrystalline and thin film germanium electrodes with high lithium capacity and high rate capabilities. J. Electrochem. Soc. 2004, 151, A698–A702.

55

Laforge, B.; Levan-Jodin, L.; Salot, R.; Billard, A. Study of germanium as electrode in thin-film battery. J. Electrochem. Soc. 2008, 155, A181–A188.

56

Liu, X. H.; Huang, S.; Picraux, S. T.; Li, J.; Zhu, T.; Huang, J. Y. Reversible nanopore formation in Ge nanowires during lithiation–delithiation cycling: An in situ transmission electron microscopy study. Nano Lett. 2011, 11, 3991–3997.

57

Tan, L. P.; Lu, Z. Y.; Tan, H. T.; Zhu, J. X.; Rui, X. H.; Yan, Q. Y.; Hng, H. H. Germanium nanowires-based carbon composite as anodes for lithium-ion batteries. J. Power Sources 2012, 206, 253–258.

58

Yoon, S.; Park, C. -M.; Sohn, H. -J. Electrochemical characterizations of germanium and carbon-coated germanium composite anode for lithium-ion batteries. Electrochem. Solid-State Lett. 2008, 11, A42–A45.

59

Ko, Y. -D.; Kang, J. -G.; Lee, G. -H.; Park, J. -G.; Park, K. -S.; Jin, Y. -H.; Kim, D. -W. Sn-induced low-temperature growth of Ge nanowire electrodes with a large lithium storage capacity. Nanoscale 2011, 3, 3371–3375.

60

Collins, G.; Holmes, J. D. Chemical functionalisation of silicon and germanium nanowires. J. Mater. Chem. 2011, 21, 11052–11069.

61

Seo, M. -H.; Park, M.; Lee, K. T.; Kim, K.; Kim, J.; Cho, J. High performance Ge nanowire anode sheathed with carbon for lithium rechargeable batteries. Energy Environ. Sci. 2011, 4, 425–428.

62

Dileo, R. A.; Ganter, M. J.; Landi, B. J.; Raffaelle, R. P. Germanium–single-wall carbon nanotube anodes for lithium ion batteries. J. Mater. Res. 2011, 25, 1441–1446.

63

Cui, G. L.; Gu, L.; Kaskhedikar, N.; van Aken, P. A.; Maier, J. A novel germanium/carbon nanotubes nanocomposite for lithium storage material. Electrochim. Acta 2010, 55, 985–988.

64

Song, T.; Cheng, H.; Choi, H.; Lee, J.; Lee, J. -H.; Han, H.; Lee, D. H.; Yoo, D. S.; Kwon, M. -S.; Choi, J. -M.; et al. Si/Ge double-layered nanotube array as lithium ion battery anode. ACS Nano 2012, 6, 303–309.

65

Park, M. -H.; Cho, Y. H.; Kim, K.; Kim, J.; Liu, M. L.; Cho, J. Germanium nanotubes prepared by using the Kirkendall effect as anodes for high-rate lithium batteries. Angew. Chem. Int. Ed. 2011, 50, 9647–9650.

66

Park, M. -H.; Kim, K.; Kim, J.; Cho, J. Flexible dimensional control of high-capacity Li-ion-battery anodes: From 0D hollow to 3D porous germanium nanoparticle assemblies. Adv. Mater. 2010, 22, 415–418.

67

Seng, K. H.; Park, M. -H.; Guo, Z. P.; Liu, H. K.; Cho, J. Self-assembled germanium/carbon nanostructures as high-power anode material for the lithium-ion battery. Angew. Chem. Int. Ed. 2012, 51, 5657–5661.

68

Yang, L. C.; Gao, Q. S.; Li, L.; Tang, Y.; Wu, Y. P. Mesoporous germanium as anode material of high capacity and good cycling prepared by a mechanochemical reaction. Electrochem. Commun. 2010, 12, 418–421.

69

Wang, X. -L.; Han, W. -Q.; Chen, H. Y.; Bai, J. M.; Tyson, T. A.; Yu, X. -Q.; Wang, X. -J.; Yang, X. -Q. Amorphous hierarchical porous GeOx as high-capacity anodes for Li ion batteries with very long cycling life. J. Am. Chem. Soc. 2011, 133, 20692–20695.

70

Deng, D.; Kim, M. G.; Lee, J. Y.; Cho, J. Green energy storage materials: Nanostructured TiO2 and Sn-based anodes for lithium-ion batteries. Energy Environ. Sci. 2009, 2, 818–837.

71

Wu, H. B.; Chen, J. S.; Hng, H. H.; Lou, X. W. D. Nanostructured metal oxide-based materials as advanced anodes for lithium-ion batteries. Nanoscale 2012, 4, 2526–2542.

72

Wang, Z. Y.; Zhou, L.; Lou, X. W. D. Metal oxide hollow nanostructures for lithium-ion batteries. Adv. Mater. 2012, 24, 1903–1911.

73

Bazin, L.; Mitra, S.; Taberna, P. L.; Poizot, P.; Gressier, M.; Menu, M. J.; Barnabé, A.; Simon, P.; Tarascon, J. -M. High rate capability pure Sn-based nano-architectured electrode assembly for rechargeable lithium batteries. J. Power Sources 2009, 188, 578–582.

74

Huang, J. Y.; Zhong, L.; Wang, C. M.; Sullivan, J. P.; Xu, W.; Zhang, L. Q.; Mao, S. X.; Hudak, N. S.; Liu, X. H.; Subramanian, A.; et al. In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode. Science 2010, 330, 1515–1520.

75

Ko, Y. -D.; Kang, J. -G.; Park, J. -G.; Lee, S.; Kim, D. -W. Self-supported SnO2 nanowire electrodes for high-power lithium-ion batteries. Nanotechnology 2009, 20, 455701.

76

Meduri, P.; Pendyala, C.; Kumar, V.; Sumanasekera, G. U.; Sunkara, M. K. Hybrid tin oxide nanowires as stable and high capacity anodes for Li-ion batteries. Nano Lett. 2009, 9, 612–616.

77

Park, M. -S.; Kang, Y. -M.; Wang, G. -X.; Dou, S. -X.; Liu, H. -K. The effect of morphological modification on the electrochemical properties of SnO2 nanomaterials. Adv. Funct. Mater. 2008, 18, 455–461.

78

Liu, J. P.; Li, Y. Y.; Huang, X. T.; Ding, R. M.; Hu, Y. Y.; Jiang, J.; Liao, L. Direct growth of SnO2 nanorod array electrodes for lithium-ion batteries. J. Mater. Chem. 2009, 19, 1859–1864.

79

Lou, X. W.; Li, C. M.; Archer, L. A. Designed synthesis of coaxial SnO2@carbon hollow nanospheres for highly reversible lithium storage. Adv. Mater. 2009, 21, 2536–2539.

80

Chou, S. -L.; Wang, J. -Z.; Zhong, C.; Rahman, M. M.; Liu, H. -K.; Dou, S. -X. A facile route to carbon-coated SnO2 nanoparticles combined with a new binder for enhanced cyclability of Li-ion rechargeable batteries. Electrochim. Acta 2009, 54, 7519–7524.

81

Lou, X. W.; Deng, D.; Lee, J. Y.; Archer, L. A. Preparation of SnO2/carbon composite hollow spheres and their lithium storage properties. Chem. Mater. 2008, 20, 6562–6566.

82

Qiao, H.; Zheng, Z.; Zhang, L. Z.; Xiao, L. F. SnO2@C core– shell spheres: Synthesis, characterization, and performance in reversible Li-ion storage. J. Mater. Sci. 2008, 43, 2778–2784.

83

Liu, J.; Li, W.; Manthiram, A. Dense core–shell structured SnO2/C composites as high performance anodes for lithium ion batteries. Chem. Commun. 2010, 46, 1437–1439.

84

Chen, J. S.; Cheah, Y. L.; Chen, Y. T.; Jayaprakash, N.; Madhavi, S.; Yang, Y. H.; Lou, X. W. SnO2 nanoparticles with controlled carbon nanocoating as high-capacity anode materials for lithium-ion batteries. J. Phys. Chem. C 2009, 113, 20504–20508.

85

Derrien, G.; Hassoun, J.; Panero, S.; Scrosati, B. Nanostructured Sn–C composite as an advanced anode material in high-performance lithium-ion batteries. Adv. Mater. 2007, 19, 2336–2340.

86

Hassoun, J.; Derrien, G.; Panero, S.; Scrosati, B. A nanostructured Sn–C composite lithium battery electrode with unique stability and high electrochemical performance. Adv. Mater. 2008, 20, 3169–3175.

87

Yu, Y.; Gu, L.; Wang, C. L.; Dhanabalan, A.; van Aken, P. A.; Maier, J. Encapsulation of Sn@carbon nanoparticles in bamboo-like hollow carbon nanofibers as an anode material in lithium-based batteries. Angew. Chem. Int. Ed. 2009, 48, 6485–6489.

88

Wang, G. X.; Wang, B.; Wang, X. L.; Park, J.; Dou, S. X.; Ahn, H.; Kim, K. Sn/graphene nanocomposite with 3D architecture for enhanced reversible lithium storage in lithium ion batteries. J. Mater. Chem. 2009, 19, 8378–8384.

89

Yao, J.; Shen, X. P.; Wang, B.; Liu, H. K.; Wang, G. X. In situ chemical synthesis of SnO2–graphene nanocomposite as anode materials for lithium-ion batteries. Electrochem. Commun. 2009, 11, 1849–1852.

90

Du, Z. F.; Yin, X. M.; Zhang, M.; Hao, Q. Y.; Wang, Y. G.; Wang, T. H. In situ synthesis of SnO2/graphene nanocomposite and their application as anode material for lithium ion battery. Mater. Lett. 2010, 64, 2076–2079.

91

Wang, X. Y.; Zhou, X. F.; Yao, K.; Zhang, J. G.; Liu, Z. P. A SnO2/graphene composite as a high stability electrode for lithium ion batteries. Carbon 2011, 49, 133–139.

92

Kim, H.; Kim, S. -W.; Park, Y. -U.; Gwon, H.; Seo, D. -H.; Kim, Y.; Kang, K. SnO2/graphene composite with high lithium storage capability for lithium rechargeable batteries. Nano Res. 2010, 3, 813–821.

93

Demir-Cakan, R.; Hu, Y. -S.; Antonietti, M.; Maier, J.; Titrici, M. -M. Facile one-pot synthesis of mesoporous SnO2 microspheres via nanoparticles assembly and lithium storage properties. Chem. Mater. 2008, 20, 1227–1229.

94

Guo, Z. P.; Du, G. D.; Nuli, Y. N.; Hassan, M. F.; Liu, H. K. Ultra-fine porous SnO2 nanopowder prepared via a molten salt process: A highly efficient anode material for lithium-ion batteries. J. Mater. Chem. 2009, 19, 3253–3257.

95

Li, L. M.; Yin, X. M.; Liu, S.; Wang, Y. G.; Chen, L. B.; Wang, T. H. Electrospun porous SnO2 nanotubes as high capacity anode materials for lithium ion batteries. Electrochem. Commun. 2010, 12, 1383–1386.

96

Ning, J. J.; Dai, Q. Q.; Jiang, T.; Men, K. K.; Liu, D. H.; Xiao, N. R.; Li, C. Y.; Li, D. M.; Liu, B. B.; Zou, B.; et al. Facile synthesis of tin oxide nanoflowers: A potential high-capacity lithium-ion-storage material. Langmuir 2009, 25, 1818–1821.

97

Yin, X. M.; Li, C. C.; Zhang, M.; Hao, Q. Y.; Liu, S.; Chen, L. B.; Wang, T. H. One-step synthesis of hierarchical SnO2 hollow nanostructures via self-assembly for high power lithium ion batteries. J. Phys. Chem. C 2010, 114, 8084–8088.

98

Ferguson, P. P.; Todd, A. D. W.; Dahn, J. R. Comparison of mechanically alloyed and sputtered tin–cobalt–carbon as an anode material for lithium-ion batteries. Electrochem. Commun. 2008, 10, 25–31.

99

Ferguson, P. P.; Martine, M. L.; George, A. E.; Dahn, J. R. Studies of tin–transition metal–carbon and tin–cobalt–transition metal–carbon negative electrode materials prepared by mechanical attrition. J. Power Sources 2009, 194, 794–800.

100

Chen, Z. X.; Qian, J. F.; Ai, X. P.; Cao, Y. L.; Yang, H. X. Preparation and electrochemical performance of Sn–Co–C composite as anode material for Li-ion batteries. J. Power Sources 2009, 189, 730–732.

101

Hassoun, J.; Panero, S.; Mulas, G.; Scrosati, B. An electrochemical investigation of a Sn–Co–C ternary alloy as a negative electrode in Li-ion batteries. J. Power Sources 2007, 171, 928–931.

102

Guo, H.; Zhao, H. L.; Jia, X. D. Spherical Sn–Ni–C alloy anode material with submicro/micro complex particle structure for lithium secondary batteries. Electrochem. Commun. 2007, 9, 2207–2211.

103

Ke, F. -S.; Huang, L.; Cai, J. -S.; Sun, S. -G. Electroplating synthesis and electrochemical properties of macroporous Sn–Cu alloy electrode for lithium-ion batteries. Electrochim. Acta 2007, 52, 6741–6747.

104

Zhu, G. -N.; Wang, Y. -G.; Xia, Y. -Y. Ti-based compounds as anode materials for Li-ion batteries. Energy Environ. Sci. 2012, 5, 6652–6667.

105

Amine, K.; Belharouak, I.; Chen, Z. H.; Tran, T.; Yumoto, H.; Ota, N.; Myung, S. -T.; Sun, Y. -K. Nanostructured anode material for high-power battery system in electric vehicles. Adv. Mater. 2010, 22, 3052–3057.

106

Lu, X.; Zhao, L.; He, X. Q.; Xiao, R. J.; Gu, L.; Hu, Y. -S.; Li, H.; Wang, Z. X.; Duan, X. F.; Chen, L. Q.; et al. Lithium storage in Li4Ti5O12 spinel: The full static picture from electron microscopy. Adv. Mater. 2012, 24, 3233–3238.

107

Zhu, G. -N.; Liu, H. -J.; Zhuang, J. -H.; Wang, C. -X.; Wang, Y. -G.; Xia, Y. -Y. Carbon-coated nano-sized Li4Ti5O12 nanoporous micro-sphere as anode material for high-rate lithium-ion batteries. Energy Environ. Sci. 2011, 4, 4016– 4022.

108

Jung, H. -G.; Myung, S. -T.; Yoon, C. S.; Son, S. -B.; Oh, K. H.; Amine, K.; Scrosati, B.; Sun, Y. -K. Microscale spherical carbon-coated Li4Ti5O12 as ultra high power anode material for lithium batteries. Energy Environ. Sci. 2011, 4, 1345– 1351.

109

Yu, H. Y.; Zhang, X. F.; Jalbout, A. F.; Yan, X. D.; Pan, X. M.; Xie, H. M.; Wang, R. S. High-rate characteristics of novel anode Li4Ti5O12/polyacene materials for Li-ion secondary batteries. Electrochim. Acta 2008, 53, 4200–4204.

110

Cheng, L.; Yan, J.; Zhu, G. -N.; Luo, J. -Y.; Wang, C. -X.; Xia, Y. -Y. General synthesis of carbon-coated nanostructure Li4Ti5O12 as a high rate electrode material for Li-ion intercalation. J. Mater. Chem. 2010, 20, 595–602.

111

Wang, G. J.; Gao, J.; Fu, L. J.; Zhao, N. H.; Wu, Y. P.; Takamura, T. Preparation and characteristic of carbon-coated Li4Ti5O12 anode material. J. Power Sources 2007, 174, 1109–1112.

112

Yuan, T.; Yu, X.; Cai, R.; Zhou, Y. K.; Shao, Z. P. Synthesis of pristine and carbon-coated Li4Ti5O12 and their low-temperature electrochemical performance. J. Power Sources 2010, 195, 4997–5004.

113

Cheng, L.; Li, X. -L.; Liu, H. -J.; Xiong, H. -M.; Zhang, P. -W.; Xia, Y. -Y. Carbon-coated Li4Ti5O12 as a high rate electrode material for Li-ion intercalation. J. Electrochem. Soc. 2007, 154, A692–A697.

114

Liu, H.; Feng, Y.; Wang, K.; Xie, J. Y. Synthesis and electrochemical properties of Li4Ti5O12/C composite by the PVB rheological phase method. J. Phys. Chem. Solids 2008, 69, 2037–2040.

115

Gao, J.; Ying, J. R.; Jiang, C. Y.; Wan, C. R. High-density spherical Li4Ti5O12/C anode material with good rate capability for lithium ion batteries. J. Power Sources 2007, 166, 255–259.

116

Zhu, N.; Liu, W.; Xue, M. Q.; Xie, Z.; Zhao, D.; Zhang, M. N.; Chen, J. T.; Cao, T. B. Graphene as a conductive additive to enhance the high-rate capabilities of electrospun Li4Ti5O12 for lithium-ion batteries. Electrochim. Acta 2010, 55, 5813–5818.

117

Shen, L. F.; Yuan, C. Z.; Luo, H. J.; Zhang, X. G.; Yang, S. D.; Lu, X. J. In situ synthesis of high-loading Li4Ti5O12– graphene hybrid nanostructures for high rate lithium ion batteries. Nanoscale 2011, 3, 572–574.

118

Hao, Y. -J.; Lai, Q. -Y.; Lu, J. -Z.; Ji, X. -Y. Effects of dopant on the electrochemical properties of Li4Ti5O12 anode materials. Ionics 2007, 13, 369–373.

119

Huang, S. H.; Wen, Z. Y.; Zhu, X. J.; Lin, Z. X. Effects of dopant on the electrochemical performance of Li4Ti5O12 as electrode material for lithium ion batteries. J. Power Sources 2007, 165, 408–412.

120

Wolfenstine, J.; Allen, J. L. Electrical conductivity and charge compensation in Ta doped Li4Ti5O12. J. Power Sources 2008, 180, 582–585.

121

Qi, Y. L.; Huang, Y. D.; Jia, D. Z.; Bao, S. -J.; Guo, Z. P. Preparation and characterization of novel spinel Li4Ti5O12−xBrx anode materials. Electrochim. Acta 2009, 54, 4772–4776.

122

Wang, Y. -Q.; Gu, L.; Guo, Y. -G.; Li, H.; He, X. -Q.; Tsukimoto, S.; Ikuhara, Y.; Wan, L. -J. Rutile-TiO2 nanocoating for a high-rate Li4Ti5O12 anode of a lithium-ion battery. J. Am. Chem. Soc. 2012, 134, 7874–7879.

123

Wang, Y. G.; Liu, H. M.; Wang, K. X.; Eiji, H.; Wang, Y. R.; Zhou, H. S. Synthesis and electrochemical performance of nano-sized Li4Ti5O12 with double surface modification of Ti(Ⅲ) and carbon. J. Mater. Chem. 2009, 19, 6789–6795.

124

Song, M. -S.; Benayad, A.; Choi, Y. -M.; Park, K. -S. Does Li4Ti5O12 need carbon in lithium ion batteries? Carbon-free electrode with exceptionally high electrode capacity. Chem. Commun. 2012, 48, 516–518.

125

Haetge, J.; Hartmann, P.; Brezesinski, K.; Janek, J.; Brezesinski, T. Ordered large-pore mesoporous Li4Ti5O12 thin film electrodes with nanocrystalline framework for high rate rechargeable lithium batteries: Relationships among charge storage, electrical conductivity, and nanoscale structure. Chem. Mater. 2011, 23, 4384–4393.

126

Shen, L. F.; Yuan, C. Z.; Luo, H. J.; Zhang, X. G.; Xu, K.; Xia, Y. Y. Facile synthesis of hierarchically porous Li4Ti5O12 microspheres for high rate lithium ion batteries. J. Mater. Chem. 2010, 20, 6998–7004.

127

Woo, S. -W.; Dokko, K.; Kanamura, K. Preparation and characterization of three dimensionally ordered macroporous Li4Ti5O12 anode for lithium batteries. Electrochim. Acta 2007, 53, 79–82.

128

Zhao, L.; Hu, Y. -S.; Li, H.; Wang, Z. X.; Chen, L. Q. Porous Li4Ti5O12 coated with N-doped carbon from ionic liquids for Li-ion batteries. Adv. Mater. 2011, 23, 1385–1388.

129

Jiang, C. H.; Zhou, Y.; Honma, I.; Kudo, T.; Zhou, H. S. Preparation and rate capability of Li4Ti5O12 hollow-sphere anode material. J. Power Sources 2007, 166, 514–518.

130

Tang, Y. F.; Yang, L.; Fang, S. H.; Qiu, Z. Li4Ti5O12 hollow microspheres assembled by nanosheets as an anode material for high-rate lithium ion batteries. Electrochim. Acta 2009, 54, 6244–6249.

131

Jung, H. -G.; Jang, M. W.; Hassoun, J.; Sun, Y. -K.; Scrosati, B. A high-rate long-life Li4Ti5O12/Li[Ni0.45Co0.1Mn1.45]O4 lithium-ion battery. Nat. Commun. 2011, 2, 516–520.

132

Landi, B. J.; Ganter, M. J.; Cress, C. D.; DiLeo, R. A.; Raffaelle, R. P. Carbon nanotubes for lithium ion batteries. Energy Environ. Sci. 2009, 2, 638–654.

133

Chen, J.; Minett, A. I.; Liu, Y.; Lynam, C.; Sherrell, P.; Wang, C. Y.; Wallace, G. G. Direct growth of flexible carbon nanotube electrodes. Adv. Mater. 2008, 20, 566–570.

134

Yang, S. B.; Song, H. H.; Chen, X. H.; Okotrub, A. V.; Bulusheva, L. G. Electrochemical performance of arc-produced carbon nanotubes as anode material for lithium-ion batteries. Electrochim. Acta 2007, 52, 5286–5293.

135

Chew, S. Y.; Ng, S. H.; Wang, J. Z.; Novák, P.; Krumeich, F.; Chou, S. L.; Chen, J.; Liu, H. K. Flexible free-standing carbon nanotube films for model lithium-ion batteries. Carbon 2009, 47, 2976–2983.

136

Lee, S. W.; Yabuuchi, N.; Gallant, B. M.; Chen, S.; Kim, B. -S.; Hammond, P. T.; Shao-Horn, Y. High-power lithium batteries from functionalized carbon-nanotube electrodes. Nat. Nanotechnol. 2010, 5, 531–537.

137

Landi, B. J.; Ganter, M. J.; Schauerman, C. M.; Cress, C. D.; Raffaelle, R. P. Lithium ion capacity of single wall carbon nanotube paper electrodes. J. Phys. Chem. C 2008, 112, 7509–7515.

138

Masarapu, C.; Subramanian, V.; Zhu, H. W.; Wei, B. Q. Long-cycle electrochemical behavior of multiwall carbon nanotubes synthesized on stainless steel in Li ion batteries. Adv. Funct. Mater. 2009, 19, 1008–1014.

139

Wang, X. X.; Wang, J. N.; Chang, H.; Zhang, Y. F. Preparation of short carbon nanotubes and application as an electrode material in Li-ion batteries. Adv. Funct. Mater. 2007, 17, 3613–3618.

140

Guo, B. K.; Wang, X. Q.; Fulvio, P. F.; Chi, M. F.; Mahurin, S. M.; Sun, X. -G.; Dai, S. Soft-templated mesoporous carbon-carbon nanotube composites for high performance lithium-ion batteries. Adv. Mater. 2011, 23, 4661–4666.

141

Ji, L. W.; Zhang, X. W. Fabrication of porous carbon nanofibers and their application as anode materials for rechargeable lithium-ion batteries. Nanotechnology 2009, 20, 155705–155711.

142

Qie, L.; Chen, W. -M.; Wang, Z. -H.; Shao, Q. -G.; Li, X.; Yuan, L. -X.; Hu, X. -L.; Zhang, W. -X.; Huang, Y. -H. Nitrogen-doped porous carbon nanofiber webs as anodes for lithium ion batteries with a superhigh capacity and rate capability. Adv. Mater. 2012, 24, 2047–2050.

143

Zhang, J.; Hu, Y. -S.; Tessonnier, J. -P.; Weinberg, G.; Maier, J.; Schlögl, R.; Su, D. S. CNFs@CNTs: Superior carbon for electrochemical energy storage. Adv. Mater. 2008, 20, 1450–1455.

144

Yang, S. B.; Huo, J. P.; Song, H. H.; Chen, X. H. A comparative study of electrochemical properties of two kinds of carbon nanotubes as anode materials for lithium ion batteries. Electrochim. Acta 2008, 53, 2238–2244.

145

Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.

146

Brownson, D. A. C.; Kampouris, D. K.; Banks, C. E. An overview of graphene in energy production and storage applications. J. Power Sources 2011, 196, 4873–4885.

147

Sun, Y. Q.; Wu, Q.; Shi, G. Q. Graphene based new energy materials. Energy Environ. Sci. 2011, 4, 1113–1132.

148

Pumera, M. Graphene-based nanomaterials for energy storage. Energy Environ. Sci. 2011, 4, 668–674.

149

Uthaisar, C.; Barone, V. Edge effects on the characteristics of Li diffusion in graphene. Nano Lett. 2010, 10, 2838– 2842.

150

Pollak, E.; Geng, B. S.; Jeon, K. -J.; Lucas, I. T.; Richardson, T. J.; Wang, F.; Kostecki, R. The interaction of Li+ with single-layer and few-layer graphene. Nano Lett. 2010, 10, 3386–3388.

151

Pan, D. Y.; Wang, S.; Zhao, B.; Wu, M. H.; Zhang, H. J.; Wang, Y.; Jiao, Z. Li storage properties of disordered graphene nanosheets. Chem. Mater. 2009, 21, 3136–3142.

152

Lian, P. C.; Zhu, X. F.; Liang, S. Z.; Li, Z.; Yang, W. S.; Wang, H. H. Large reversible capacity of high quality graphene sheets as an anode material for lithium-ion batteries. Electrochim. Acta 2010, 55, 3909–3914.

153

Bhardwaj, T.; Antic, A.; Pavan, B.; Barone, V.; Fahlman, B. D. Enhanced electrochemical lithium storage by graphene nanoribbons. J. Am. Chem. Soc. 2010, 132, 12556–12558.

154

Guo, P.; Song, H. H.; Chen, X. H. Electrochemical performance of graphene nanosheets as anode material for lithium-ion batteries. Electrochem. Commun. 2009, 11, 1320–1324.

155

Yoo, E.; Kim, J.; Hosono, E.; Zhou, H. S.; Kudo, T.; Honma, I. Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Lett. 2008, 8, 2277–2282.

156

Wang, C. Y.; Li, D.; Too, C. O.; Wallace, G. G. Electrochemical properties of graphene paper electrodes used in lithium batteries. Chem. Mater. 2009, 21, 2604– 2606.

157

Abouimrane, A.; Compton, O. C.; Amine, K.; Nguyen, S. T. Non-annealed graphene paper as a binder-free anode for lithium-ion batteries. J. Phys. Chem. C 2010, 114, 12800–12804.

158

Liu, F.; Song, S. Y.; Xue, D. F.; Zhang, H. J. Folded structured graphene paper for high performance electrode materials. Adv. Mater. 2012, 24, 1089–1094.

159

Yang, S. B.; Feng, X. L.; Zhi, L. J.; Cao, Q.; Maier, J.; Müllen, K. Nanographene-constructed hollow carbon spheres and their favorable electroactivity with respect to lithium storage. Adv. Mater. 2010, 22, 838–842.

160

Wang, K. X.; Li, Z. L.; Wang, Y. G.; Liu, H. M.; Chen, J. S.; Holmes, J.; Zhou, H. S. Carbon nanocages with nanographene shell for high-rate lithium ion batteries. J. Mater. Chem. 2010, 20, 9748–9753.

161

Li, G. D.; Xu, L. Q.; Hao, Q.; Wang, M.; Qian, Y. T. Synthesis, characterization and application of carbon nanocages as anode materials for high-performance lithium-ion batteries. RSC Adv. 2012, 2, 284–291.

162

Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J. -M. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 2000, 407, 496–469.

163

Hao, R.; Xing, R. J.; Xu, Z. C.; Hou, Y. L.; Gao, S.; Sun, S. H. Synthesis, functionalization, and biomedical applications of multifunctional magnetic nanoparticles. Adv. Mater. 2010, 22, 2729–2742.

164

NuLi, Y. N.; Zeng, R.; Zhang, P.; Guo, Z. P.; Liu, H. K. Controlled synthesis of α-Fe2O3 nanostructures and their size-dependent electrochemical properties for lithium-ion batteries. J. Power Sources 2008, 184, 456–461.

165

Larcher, D.; Masquelier, C.; Bonnin, D.; Chabre, Y.; Masson, V.; Leriche, J. -B.; Tarascon, J. -M. Effect of particle size on lithium intercalation into α-Fe2O3. J. Electrochem. Soc. 2003, 150, A133–A139.

166

Reddy, M. V.; Yu, T.; Sow, C. -H.; Shen, Z. X.; Lim, C. T.; Subba Rao, G. V.; Chowdari, B. V. R. α-Fe2O3 nanoflakes as an anode material for Li-ion batteries. Adv. Funct. Mater. 2007, 17, 2792–2799.

167

Kim, H. S.; Piao, Y. Z.; Kang, S. H.; Hyeon, T.; Sung, Y. -E. Uniform hematite nanocapsules based on an anode material for lithium ion batteries. Electrochem. Commun. 2010, 12, 382–385.

168

Chen, J. S.; Zhu, T.; Yang, X. H.; Yang, H. G.; Lou, X. W. Top-down fabrication of α-Fe2O3 single-crystal nanodiscs and microparticles with tunable porosity for largely improved lithium storage properties. J. Am. Chem. Soc. 2010, 132, 13162–13164.

169

Koo, B.; Xiong, H.; Slater, M. D.; Prakapenka, V. B.; Balasubramanian, M.; Podsiadlo, P.; Johnson, C. S.; Rajh, T.; Shevchenko, E. V. Hollow iron oxide nanoparticles for application in lithium ion batteries. Nano Lett. 2012, 12, 2429–2435.

170

Liu, J. P.; Li, Y. Y.; Fan, H. J.; Zhu, Z. H.; Jiang, J.; Ding, R. M.; Hu, Y. Y.; Huang, X. T. Iron oxide-based nanotube arrays derived from sacrificial template-accelerated hydrolysis: Large-area design and reversible lithium storage. Chem. Mater. 2010, 22, 212–217.

171

Zhu, X. J.; Zhu, Y. W.; Murali, S.; Stoller, M. D.; Ruoff, R. S. Nanostructured reduced graphene oxide/Fe2O3 composite as a high-performance anode material for lithium ion batteries. ACS Nano 2011, 5, 3333–3338.

172

Chen, J. S.; Zhang, Y. M.; Lou, X. W. One-pot synthesis of uniform Fe3O4 nanospheres with carbon matrix support for improved lithium storage capabilities. ACS Appl. Mater. Interfaces 2011, 3, 3276–3279.

173

Zhang, W. -M.; Wu, X. -L.; Hu, J. -S.; Guo, Y. -G.; Wan, L. -J. Carbon coated Fe3O4 nanospindles as a superior anode material for lithium-ion batteries. Adv. Funct. Mater. 2008, 18, 3941–3946.

174

Muraliganth, T.; Vadivel Murugan, A.; Manthiram, A. Facile synthesis of carbon-decorated single-crystalline Fe3O4 nanowires and their application as high performance anode in lithium ion batteries. Chem. Commun. 2009, 7360–7362.

175

Cui, Z. -M.; Jiang, L. -Y.; Song, W. -G.; Guo, Y. -G. High-yield gas–liquid interfacial synthesis of highly dispersed Fe3O4 nanocrystals and their application in lithium-ion batteries. Chem. Mater. 2009, 21, 1162–1166.

176

Wang, L.; Yu, Y.; Chen, P. C.; Zhang, D. W.; Chen, C. H. Electrospinning synthesis of C/Fe3O4 composite nanofibers and their application for high performance lithium-ion batteries. J. Power Sources 2008, 183, 717–723.

177

Zhang, Q. M.; Shi, Z. C.; Deng, Y. F.; Zheng, J.; Liu, G. C.; Chen, G. H. Hollow Fe3O4/C spheres as superior lithium storage materials. J. Power Sources 2012, 197, 305–309.

178

Chen, D. Y.; Ji, G.; Ma, Y.; Lee, J. Y.; Lu, J. M. Graphene-encapsulated hollow Fe3O4 nanoparticle aggregates as a high-performance anode material for lithium ion batteries. ACS Appl. Mater. Interfaces 2011, 3, 3078–3083.

179

Zhou, G. M.; Wang, D. -W.; Li, F.; Zhang, L. L.; Li, N.; Wu, Z. -S.; Wen, L.; Lu, G. Q.; Cheng, H. -M. Graphene-wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries. Chem. Mater. 2010, 22, 5306–5313.

180

Wang, J. -Z.; Zhong, C.; Wexler, D.; Idris, N. H.; Wang, Z. -X.; Chen, L. -Q.; Liu, H. -K. Graphene-encapsulated Fe3O4 nanoparticles with 3D laminated structure as superior anode in lithium ion batteries. Chem. Eur. J. 2011, 17, 661–667.

181

Lian, P. C.; Zhu, X. F.; Xiang, H. F.; Li, Z.; Yang, W. S.; Wang, H. H. Enhanced cycling performance of Fe3O4– graphene nanocomposite as an anode material for lithium-ion batteries. Electrochim. Acta 2010, 56, 834–840.

182

Su, J.; Cao, M. H.; Ren, L.; Hu, C. W. Fe3O4–graphene nanocomposites with improved lithium-storage and magnetism properties. J. Phys. Chem. C 2011, 115, 14469–14477.

183

Li, X. Y.; Huang, X. L.; Liu, D. P.; Wang, X.; Song, S. Y.; Zhou, L.; Zhang, H. J. Synthesis of 3D hierarchical Fe3O4/graphene composites with high lithium storage capacity and for controlled drug delivery. J. Phys. Chem. C 2011, 115, 21567–21573.

184

Ji, L. W.; Tan, Z. K.; Kuykendall, T. R.; Aloni, S.; Xun, S.; Lin, E.; Battaglia, V.; Zhang, Y. G. Fe3O4 nanoparticle-integrated graphene sheets for high-performance half and full lithium ion cells. Phys. Chem. Chem. Phys. 2011, 13, 7170–7177.

185

Li, B. J.; Cao, H. Q.; Shao, J.; Qu, M. Z. Enhanced anode performances of the Fe3O4–carbon–rGO three dimensional composite in lithium ion batteries. Chem. Commun. 2011, 47, 10374–10376.

186

Ban, C. M.; Wu, Z. C.; Gillaspie, D. T.; Chen, L.; Yan, Y. F.; Blackburn, J. L.; Dillon, A. C. Nanostructured Fe3O4/SWNT electrode: Binder-free and high-rate Li-ion anode. Adv. Mater. 2010, 22, E145–E149.

187

Wang, S. Q.; Zhang, J. Y.; Chen, C. H. Fe3O4 submicron spheroids as anode materials for lithium-ion batteries with stable and high electrochemical performance. J. Power Sources 2010, 195, 5379–5381.

188

Shaju, K. M.; Jiao, F.; Débart, A.; Bruce, P. G. Mesoporous and nanowire Co3O4 as negative electrodes for rechargeable lithium batteries. Phys. Chem. Chem. Phys. 2007, 9, 1837–1842.

189

Li, Y. G.; Tan, B.; Wu, Y. Y. Mesoporous Co3O4 nanowire arrays for lithium ion batteries with high capacity and rate capability. Nano Lett. 2008, 8, 265–270.

190

Li, C. C.; Yin, X. M.; Chen, L. B.; Li, Q. H.; Wang, T. H. Synthesis of cobalt ion-based coordination polymer nanowires and their conversion into porous Co3O4 nanowires with good lithium storage properties. Chem. Eur. J. 2010, 16, 5215–5221.

191

Zhang, P.; Guo, Z. P.; Huang, Y. D.; Jia, D. Z.; Liu, H. K. Synthesis of Co3O4/carbon composite nanowires and their electrochemical properties. J. Power Sources 2011, 196, 6987–6991.

192

Du, N.; Zhang, H.; Chen, B. D.; Wu, J. B.; Ma, X. Y.; Liu, Z. H.; Zhang, Y. Q.; Yang, D. R.; Huang, X. H.; Tu, J. P. Porous Co3O4 nanotubes derived from Co4(CO)12 clusters on carbon nanotube templates: A highly efficient material for Li-battery applications. Adv. Mater. 2007, 19, 4505–4509.

193

Lou, X. W.; Deng, D.; Lee, J. Y.; Feng, J.; Archer, L. A. Self-supported formation of needlelike Co3O4 nanotubes and their application as lithium-ion battery electrodes. Adv. Mater. 2008, 20, 258–262.

194

Lou, X. W.; Deng, D.; Lee, J. Y.; Archer, L. A. Thermal formation of mesoporous single-crystal Co3O4 nano-needles and their lithium storage properties. J. Mater. Chem. 2008, 18, 4397–4401.

195

Tian, L.; Zou, H. L.; Fu, J. X.; Yang, X. F.; Wang, Y.; Guo, H. L.; Fu, X. H.; Liang, C. L.; Wu, M. M.; Shen, P. K.; et al. Topotactic conversion route to mesoporous quasi-single-crystalline Co3O4 nanobelts with optimizable electrochemical performance. Adv. Funct. Mater. 2010, 20, 617–623.

196

Zhan, F. M.; Geng, B. Y.; Guo, Y. J. Porous Co3O4 nanosheets with extraordinarily high discharge capacity for lithium batteries. Chem. Eur. J. 2009, 15, 6169–6174.

197

Wang, X.; Wu, X. -L.; Guo, Y. -G.; Zhong, Y. T.; Cao, X. Q.; Ma, Y.; Yao, J. N. Synthesis and lithium storage properties of Co3O4 nanosheet-assembled multishelled hollow spheres. Adv. Funct. Mater. 2010, 20, 1680–1686.

198

Wang, X.; Yu, L. J.; Wu, X. -L.; Yuan, F. L.; Guo, Y. -G.; Ma, Y.; Yao, J. N. Synthesis of single-crystalline Co3O4 octahedral cages with tunable surface aperture and their lithium storage properties. J. Phys. Chem. C 2009, 113, 15553–15558.

199

Chen, S. Q.; Wang, Y. Microwave-assisted synthesis of a Co3O4–graphene sheet-on-sheet nanocomposite as a superior anode material for Li-ion batteries. J. Mater. Chem. 2010, 20, 9735–9739.

200

Li, B. J.; Cao, H. Q.; Shao, J.; Li, G. Q.; Qu, M. Z.; Yin, G. Co3O4@graphene composites as anode materials for high-performance lithium ion batteries. Inorg. Chem. 2011, 50, 1628–1632.

201

Zhu, J. X.; Sharma, Y. K.; Zeng, Z. Y.; Zhang, X. J.; Srinivasan, M.; Mhaisalkar, S.; Zhang, H.; Hng, H. H.; Yan, Q. Y. Cobalt oxide nanowall arrays on reduced graphene oxide sheets with controlled phase, grain size, and porosity for Li-ion battery electrodes. J. Phys. Chem. C 2011, 115, 8400–8406.

202

Wu, Z. -S.; Ren, W. C.; Wen, L.; Gao, L. B.; Zhao, J. P.; Chen, Z. P.; Zhou, G. M.; Li, F.; Cheng, H. -M. Graphene anchored with Co3O4 nanoparticles as anode of lithium ion capacity and cyclic performance. ACS Nano 2010, 4, 3187–3194.

203

Kim, H.; Seo, D. -H.; Kim, S. -W.; Kim, J.; Kang, K. Highly reversible Co3O4/graphene hybrid anode for lithium rechargeable batteries. Carbon 2011, 49, 326–332.

204

Cheng, H.; Lu, Z. G.; Deng, J. Q.; Chung, C. Y.; Zhang, K. L.; Li, Y. Y. A facile method to improve the high rate capability of Co3O4 nanowire array electrodes. Nano Res. 2010, 3, 895–901.

205

Wang, X. H.; Yang, Z. B.; Sun, X. L.; Li, X. W.; Wang, D. S.; Wang, P.; He, D. Y. NiO nanocone array electrode with high capacity and rate capability for Li-ion batteries. J. Mater. Chem. 2011, 21, 9988–9990.

206

Hassan, M. F.; Guo, Z. P.; Chen, Z.; Liu, H. K. Carbon-coated MoO3 nanobelts as anode materials for lithium-ion batteries. J. Power Sources 2010, 195, 2372–2376.

207

Zhong, K. F.; Xia, X.; Zhang, B.; Li, H.; Wang, Z. X.; Chen, L. Q. MnO powder as anode active materials for lithium ion batteries. J. Power Sources 2010, 195, 3300–3308.

208

Xu, G. -L.; Xu, Y. -F.; Sun, H.; Fu, F.; Zheng, X. -M.; Huang, L.; Li, J. -T.; Yang, S. -H.; Sun, S. -G. Facile synthesis of porous MnO/C nanotubes as a high capacity anode material for lithium ion batteries. Chem. Commun. 2012, 48, 8502– 8504.

209

Li, L. H.; Nan, C. Y.; Lu, J.; Peng, Q.; Li, Y. D. α-MnO2 nanotubes: High surface area and enhanced lithium battery properties. Chem. Commun. 2012, 48, 6945–6947.

210

Reddy, A. L. M.; Shaijumon, M. M.; Gowda, S. R.; Ajayan, P. M. Coaxial MnO2/carbon nanotube array electrodes for high-performance lithium batteries. Nano Lett. 2009, 9, 1002–1006.

211

Xia, H.; Lai, M.; Lu, L. Nanoflaky MnO2/carbon nanotube nanocomposites as anode materials for lithium-ion batteries. J. Mater. Chem. 2010, 20, 6896–6902.

212

Ji, L. W.; Zhang, X. W. Manganese oxide nanoparticle-loaded porous carbon nanofibers as anode materials for high-performance lithium-ion batteries. Electrochem. Commun. 2009, 11, 795–798.

213

Wang, H. L.; Cui, L. -F.; Yang, Y.; Sanchez Casalongue, H.; Robinson, J. T.; Liang, Y. Y.; Cui, Y.; Dai, H. J. Mn3O4–graphene hybrid as a high-capacity anode material for lithium ion batteries. J. Am. Chem. Soc. 2010, 132, 13978–13980.

214

Varghese, B.; Reddy, M. V.; Yanwu, Z.; Lit, C. S.; Hoong, T. C.; Subba Rao, G. V.; Chowdari, B. V. R.; Wee, A. T. S.; Lim, C. T.; Sow, C. -H. Fabrication of NiO nanowall electrodes for high performance lithium ion battery. Chem. Mater. 2008, 20, 3360–3367.

215

Wang, X. H.; Li, X. W.; Sun, X. L.; Li, F.; Liu, Q. M.; Wang, Q.; He, D. Y. Nanostructured NiO electrode for high rate Li-ion batteries. J. Mater. Chem. 2011, 21, 3571–3573.

216

Ci, S. Q.; Zou, J. P.; Zeng, G. S.; Peng, Q.; Luo, S. L.; Wen, Z. H. Improved electrochemical properties of single crystalline NiO nanoflakes for lithium storage and oxygen electroreduction. RSC Adv. 2012, 2, 5185–5192.

217

Mai, Y. J.; Tu, J. P.; Xia, X. H.; Gu, C. D.; Wang, X. L. Co-doped NiO nanoflake arrays toward superior anode materials for lithium ion batteries. J. Power Sources 2011, 196, 6388–6393.

218

Zhou, G. M.; Wang, D. -W.; Yin, L. -C.; Li, N.; Li, F.; Cheng, H. -M. Oxygen bridges between NiO nanosheets and graphene for improvement of lithium storage. ACS Nano 2012, 6, 3214–3223.

219

Huang, Y.; Huang, X. -L.; Lian, J. -S; Xu, D.; Wang, L. -M.; Zhang, X. -B. Self-assembly of ultrathin porous NiO nanosheets/graphene hierarchical structure for high-capacity and high-rate lithium storage. J. Mater. Chem. 2012, 22, 2844–2847.

220

Xu, C. H.; Sun, J.; Gao, L. Large scale synthesis of nickel oxide/multiwalled carbon nanotube composites by direct thermal decomposition and their lithium storage properties. J. Power Sources 2011, 196, 5138–5142.

221

Liu, H.; Wang, G. X.; Liu, J.; Qiao, S. Z.; Ahn, H. Highly ordered mesoporous NiO anode material for lithium ion batteries with an excellent electrochemical performance. J. Mater. Chem. 2011, 21, 3046–3052.

222

Chen, X.; Zhang, N. Q.; Sun, K. N. Facile fabrication of CuO 1D pine-needle-like arrays for super-rate lithium storage. J. Mater. Chem. 2012, 22, 15080–15084.

223

Wang, L. L.; Cheng, W.; Gong, H. X.; Wang, C. H.; Wang, D. K.; Tang, K. B.; Qian, Y. T. Facile synthesis of nanocrystalline-assembled bundle-like CuO nanostructure with high rate capacities and enhanced cycling stability as an anode material for lithium-ion batteries. J. Mater. Chem. 2012, 22, 11297–11302.

224

Wang, F.; Tao, W. Z.; Zhao, M. S.; Xu, M. W.; Yang, S. C.; Sun, Z. B.; Wang, L. Q.; Song, X. P. Controlled synthesis of uniform ultrafine CuO nanowires as anode material for lithium-ion batteries. J. Alloys Compd. 2011, 509, 9798–9803.

225

Chen, L. B.; Lu, N.; Xu, C. M.; Yu, H. C.; Wang, T. H. Electrochemical performance of polycrystalline CuO nanowires as anode material for Li ion batteries. Electrochim. Acta 2009, 54, 4198–4201.

226

Ke, F. -S.; Huang, L.; Wei, G. -Z.; Xue, L. -J.; Li, J. -T.; Zhang, B.; Chen, S. -R.; Fan, X. -Y.; Sun, S. -G. One-step fabrication of CuO nanoribbons array electrode and its excellent lithium storage performance. Electrochim. Acta 2009, 54, 5825–5829.

227

Chen, X.; Zhang, N. Q.; Sun, K. N. Facile fabrication of CuO mesoporous nanosheet cluster array electrodes with super lithium-storage properties. J. Mater. Chem. 2012, 22, 13637–13642.

228

Wang, Z. Y.; Su, F. B.; Madhavi, S.; Lou, X. W. CuO nanostructures supported on Cu substrate as integrated electrodes for highly reversible lithium storage. Nanoscale 2011, 3, 1618–1623.

229

Wang, H. B.; Pan, Q. M.; Zhao, J. W.; Yin, G. P.; Zuo, P. J. Fabrication of CuO film with network-like architectures through solution-immersion and their application in lithium ion batteries. J. Power Sources 2007, 167, 206–211.

230

Xiang, J. Y.; Tu, J. P.; Huang, X. H.; Yang, Y. Z. A comparison of anodically grown CuO nanotube film and Cu2O film as anodes for lithium ion batteries. J. Solid State Electrochem. 2008, 12, 941–945.

231

Wang, B.; Wu, X. -L.; Shu, C. -Y.; Guo, Y. -G.; Wang, C. -R. Synthesis of CuO/graphene nanocomposite as a high-performance anode material for lithium-ion batteries. J. Mater. Chem. 2010, 20, 10661–10664.

232

Mai, Y. J.; Wang, X. L.; Xiang, J. Y.; Qiao, Y. Q.; Zhang, D.; Gu, C. D.; Tu, J. P. CuO/graphene composite as anode materials for lithium-ion batteries. Electrochim. Acta 2011, 56, 2306–2311.

233

Lu, L. Q.; Wang, Y. Sheet-like and fusiform CuO nanostructures grown on graphene by rapid microwave heating for high Li-ion storage capacities. J. Mater. Chem. 2011, 21, 17916–17921.

234

Ko, S.; Lee, J. -I.; Yang, H. S.; Park, S.; Jeong, U. Mesoporous CuO particles threaded with CNTs for high-performance lithium-ion battery anodes. Adv. Mater. 2012, 24, 4451–4456.

235

Xiang, J. Y.; Tu, J. P.; Zhang, J.; Zhong, J.; Zhang, D.; Cheng, J. P. Incorporation of MWCNTs into leaf-like CuO nanoplates for superior reversible Li-ion storage. Electrochem. Commun. 2010, 12, 1103–1107.

236

Wang, H. B.; Pan, Q. M.; Cheng, Y. X.; Zhao, J. W.; Yin, G. P. Evaluation of ZnO nanorod arrays with dandelion-like morphology as negative electrodes for lithium-ion batteries. Electrochim. Acta 2009, 54, 2851–2855.

237

Huang, X. H.; Xia, X. H.; Yuan, Y. F.; Zhou, F. Porous ZnO nanosheets grown on copper substrates as anodes for lithium ion batteries. Electrochim. Acta 2011, 56, 4960–4965.

238

Liu, J. P.; Li, Y. Y.; Ding, R. M.; Jiang, J.; Hu, Y. Y.; Ji, X. X.; Chi, Q. B.; Zhu, Z. H.; Huang, X. T. Carbon/ZnO nanorod array electrode with significantly improved lithium storage capability. J. Phys. Chem. C 2009, 113, 5336–5339.

239

Ahmad, M.; Yingying, S.; Nisar, A.; Sun, H. Y; Shen, W. C.; Wei, M.; Zhu, J. Synthesis of hierarchical flower-like ZnO nanostructures and their functionalization by Au nanoparticles for improved photocatalytic and high performance Li-ion battery anodes. J. Mater. Chem. 2011, 21, 7723–7729.

240

Zhang, C. Q.; Tu, J. P.; Yuan, Y. F.; Huang, X. H.; Chen, X. T.; Mao, F. Electrochemical performances of Ni-coated ZnO as an anode material for lithium-ion batteries. J. Electrochem. Soc. 2007, 154, A65–A69.

241

Shi, Y. F.; Guo, B. K.; Corr, S. A.; Shi, Q. H.; Hu, Y. -S.; Heier, K. R.; Chen, L. Q.; Seshadri, R.; Stucky, G. D. Ordered mesoporous metallic MoO2 materials with highly reversible lithium storage capacity. Nano Lett. 2009, 9, 4215–4220.

242

Sun, Y. M.; Hu, X. L.; Yu, J. C.; Li, Q.; Luo, W.; Yuan, L. X.; Zhang, W. X.; Huang, Y. H. Morphosynthesis of a hierarchical MoO2 nanoarchitecture as a binder-free anode for lithium-ion batteries. Energy Environ. Sci. 2011, 4, 2870–2877.

243

Wang, Z. Y.; Chen, J. S.; Zhu, T.; Madhavi, S.; Lou, X. W. One-pot synthesis of uniform carbon-coated MoO2 nanospheres for high-rate reversible lithium storage. Chem. Commun. 2010, 46, 6906–6908.

244

Luo, W.; Hu, X. L.; Sun, Y. M.; Huang, Y. H. Electrospinning of carbon-coated MoO2 nanofibers with enhanced lithium-storage properties. Phys. Chem. Chem. Phys. 2011, 13, 16735–16740.

245

Zhou, L.; Wu, H. B.; Wang, Z. Y.; Lou, X. W. Interconnected MoO2 nanocrystals with carbon nanocoating as high-capacity anode materials for lithium-ion batteries. ACS Appl. Mater. Interfaces 2011, 3, 4853–4857.

246

Lee, S. -H.; Kim, Y. -H.; Deshpande, R.; Parilla, P. A.; Whitney, E.; Gillaspie, D. T.; Jones, K. M.; Mahan, A. H.; Zhang, S. B.; Dillon, A. C. Reversible lithium-ion insertion in molybdenum oxide nanoparticles. Adv. Mater. 2008, 20, 3627–3632.

247

Riley, L. A.; Lee, S. -H.; Gedvilias, L.; Dillon, A. C. Optimization of MoO3 nanoparticles as negative-electrode material in high-energy lithium ion batteries. J. Power Sources 2010, 195, 588–592.

248

Mizushima, K.; Jones, P. C.; Wiseman, P. J.; Goodenough, J. B. LixCoO2 (0 < x ≤ 1): A new cathode material for batteries of high energy density. Mater. Res. Bull. 1980, 15, 783–789.

DOI
249

Chen, H. L.; Grey, C. P. Molten salt synthesis and high rate performance of the "Desert-Rose" form of LiCoO2. Adv. Mater. 2008, 20, 2206–2210.

250

Lu, H. -W.; Yu, L.; Zeng, W.; Li, Y. -S.; Fu, Z. -W. Fabrication and electrochemical properties of three-dimensional structure of LiCoO2 fibers. Electrochem. Solid-State Lett. 2008, 11, A140–A144.

251

Pentyala, N.; Guduru, R. K.; Mohanty, P. S. Binder free porous ultrafine/nano structured LiCoO2 cathode from plasma deposited cobalt. Electrochim. Acta 2011, 56, 9851–9859.

252

Quan, Z.; Iwase, K.; Sonoyama, N. Synthesis and electrochemical property of LiCoO2 thin films composed of nanosize compounds synthesized via nanosheet restacking method. J. Power Sources 2011, 196, 6762–6767.

253

Xiao, X. L.; Yang, L. M.; Zhao, H.; Hu, Z. B.; Li, Y. D. Facile synthesis of LiCoO2 nanowires with high electrochemical performance. Nano Res. 2012, 5, 27–32.

254

Xiao, X. L.; Liu, X. F.; Wang, L.; Zhao, H.; Hu, Z. B.; He, X. M.; Li, Y. D. LiCoO2 nanoplates with exposed (001) planes and high rate capability for lithium-ion batteries. Nano Res. 2012, 5, 395–401.

255

Mizuno, Y.; Hosono, E.; Saito, T.; Okubo, M.; Nishio-Hamane, D.; Oh-ishi, K.; Kudo, T.; Zhou, H. S. Electrospinning synthesis of wire-structured LiCoO2 for electrode materials of high-power Li-ion batteries. J. Phys. Chem. C 2012, 116, 10774–10780.

256

Jung, Y. S.; Cavanagh, A. S.; Dillon, A. C.; Groner, M. D.; George, S. M.; Lee, S. -H. Enhanced stability of LiCoO2 cathodes in lithium-ion batteries using surface modification by atomic layer deposition. J. Electrochem. Soc. 2010, 157, A75–A81.

257

Luo, S.; Wang, K.; Wang, J. P.; Jiang, K. L.; Li, Q. Q.; Fan, S. S. Binder-free LiCoO2/carbon nanotube cathodes for high-performance lithium ion batteries. Adv. Mater. 2012, 24, 2294–2298.

258

Tarascon, J. -M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367.

259

Chen, Z. H.; Qin, Y.; Amine, K.; Sun, Y. -K. Role of surface coating on cathode materials for lithium-ion batteries. J. Mater. Chem. 2010, 20, 7606–7612.

260

Hao, Q.; Ma, H. Y.; Ju, Z. C.; Li, G. D.; Li, X. W.; Xu, L. Q.; Qian, Y. T. Nano-CuO coated LiCoO2: Synthesis, improved cycling stability and good performance at high rates. Electrochim. Acta 2011, 56, 9027–9031.

261

Pu, X.; Yin, L.; Yu, C. Functional surface modifications on nanostructured LiCoO2 with lithium vanadates. J. Nanopart. Res. 2012, 14, 788.

262

Scott, I. D.; Jung, Y. S.; Cavanagh, A. S.; Yan, Y. F.; Dillon, A. C.; George, S. M.; Lee, S. -H. Ultrathin coatings on nano-LiCoO2 for Li-ion vehicular applications. Nano Lett. 2011, 11, 414–418.

263

Cheng, H. -M.; Wang, F. -M.; Chu, J. P.; Santhanam, R.; Rick, J.; Lo, S. -C. Enhanced cycleabity in lithium ion batteries: Resulting from atomic layer depostion of Al2O3 or TiO2 on LiCoO2 electrodes. J. Phys. Chem. C 2012, 116, 7629–7637.

264

Park, O. K.; Cho, Y.; Lee, S.; Yoo, H. -C.; Song, H. -K.; Cho, J. Who will drive electric vehicles, olivine or spinel? Energy Environ. Sci. 2011, 4, 1621–1633.

265

Hosono, E.; Kudo, T.; Honma, I.; Matsuda, H.; Zhou, H. S. Synthesis of single crystalline spinel LiMn2O4 nanowires for a lithium ion battery with high power density. Nano Lett. 2009, 9, 1045–1051.

266

Kim, J. -H.; Ayalasomayajula, T.; Gona, V.; Choi, D. Fabrication and electrochemical characterization of a vertical array of MnO2 nanowires grown on silicon substrates as a cathode material for lithium rechargeable batteries. J. Power Sources 2008, 183, 366–369.

267

Lee, H. -W.; Muralidharan, P.; Ruffo, R.; Mari, C. M.; Cui, Y.; Kim, D. K. Ultrathin spinel LiMn2O4 nanowires as high power cathode materials for Li-ion batteries. Nano Lett. 2010, 10, 3852–3856.

268

Luo, J. -Y.; Xiong, H. -M.; Xia, Y. -Y. LiMn2O4 nanorods, nanothorn microspheres, and hollow nanospheres as enhanced cathode materials of lithium ion battery. J. Phys. Chem. C 2008, 112, 12051–12057.

269

Fang, H. S.; Li, L. P.; Yang, Y.; Yan, G. F.; Li, G. S. Low-temperature synthesis of highly crystallized LiMn2O4 from α-manganese dioxide nanorods. J. Power Sources 2008, 184, 494–497.

270

Yang, Y.; Xie, C.; Ruffo, R.; Peng, H. L.; Kim, D. K.; Cui, Y. Single nanorod devices for battery diagnostics: A case study on LiMn2O4. Nano Lett. 2009, 9, 4109–4114.

271

Kim, D. K.; Muralidharan, P.; Lee, H. -W.; Ruffo, R.; Yang, Y.; Chan, C. K.; Peng, H. L.; Huggins, R. A.; Cui, Y. Spinel LiMn2O4 nanorods as lithium ion battery cathodes. Nano Lett. 2008, 8, 3948–3952.

272

Cho, J. VOx-coated LiMn2O4 nanorod clusters for lithium battery cathode materials. J. Mater. Chem. 2008, 18, 2257–2261.

273

Ding, Y. -L.; Xie, J.; Cao, G. -S.; Zhu, T. -J.; Yu, H. -M.; Zhao, X. -B. Single-crystalline LiMn2O4 nanotubes synthesized via template-engaged reaction as cathodes for high-power lithium ion batteries. Adv. Funct. Mater. 2011, 21, 348–355.

274

Shaju, K. M.; Bruce, P. G. A stoichiometric nano-LiMn2O4 spinel electrode exhibiting high power and stable cycling. Chem. Mater. 2008, 20, 5557–5562.

275

Okubo, M.; Mizuno, Y.; Yamada, H.; Kim, J.; Hosono, E.; Zhou, H. S.; Kudo, T.; Honma, I. Fast Li-ion insertion into nanosized LiMn2O4 without domain boundaries. ACS Nano 2010, 4, 741–752.

276

Tang, W.; Wang, X. J.; Hou, Y. Y.; Li, L. L.; Sun, H.; Zhu, Y. S.; Bai, Y.; Wu, Y. P.; Zhu, K.; van Ree, T. Nano LiMn2O4 as cathode material of high rate capability for lithium ion batteries. J. Power Sources 2012, 198, 308–311.

277

Jiao, F.; Bao, J. L.; Hill, A. H.; Bruce, P. G. Synthesis of ordered mesoporous Li–Mn–O spinel as a positive electrode for rechargeable lithium batteries. Angew. Chem. Int. Ed. 2008, 47, 9711–9716.

278

Tonti, D.; Torralvo, M. J.; Enciso, E.; Sobrados, I.; Sanz, J. Three-dimensionally ordered macroporous lithium manganese oxide for rechargeable lithium batteries. Chem. Mater. 2008, 20, 4783–4790.

279

Thackeray, M. M.; David, W. I. F.; Bruce, P. G.; Goodenough, J. B. Lithium insertion into manganese spinels. Mater. Res. Bull. 1983, 18, 461–472.

280

Şahan, H.; Göktepe, H.; Patat, S.; Ülgen, A. The effect of LBO coating method on electrochemical performance of LiMn2O4 cathode material. Solid State Ionics 2008, 178, 1837–1842.

281

Lim, S.; Cho, J. PVP-Assisted ZrO2 coating on LiMn2O4 spinel cathode nanoparticles prepared by MnO2 nanowire templates. Electrochem. Commun. 2008, 10, 1478–1481.

282

Feng, L. J.; Wang, S. P.; Han, L.; Qin, X. Y.; Wei, H. Y.; Yang, Y. Z. Enhanced electrochemical properties of LiMn2O4 cathode material coated by 5 wt. % of nano-La2O3. Mater. Lett. 2012, 78, 116–119.

283

Ito, A.; Li, D. C.; Lee, Y. S.; Kobayakawa, K.; Sato, Y. Influence of Co substitution for Ni and Mn on the structural and electrochemical characteristics of LiNi0.5Mn1.5O4. J. Power Sources 2008, 185, 1429–1433.

284

Xiao, L. F.; Zhao, Y. Q.; Yang, Y. Y.; Cao, Y. L.; Ai, X. P.; Yang, H. X. Enhanced electrochemical stability of Al-doped LiMn2O4 synthesized by a polymer-pyrolysis method. Electrochim. Acta 2008, 54, 545–550.

285

Armstrong, A. R.; Bruce, P. G. Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries. Nature 1996, 381, 499–500.

286

Ji, H. M.; Yang, G.; Miao, X. W.; Hong, A. Q. Efficient microwave hydrothermal synthesis of nanocrystalline orthorhombic LiMnO2 cathodes for lithium batteries. Electrochim. Acta 2010, 55, 3392–3397.

287

Bruce, P. G.; Armstrong, A. R.; Gitzendanner, R. L. New intercalation compounds for lithium batteries: Layered LiMnO2. J. Mater. Chem. 1999, 9, 193–198.

288

Xiao, X. L.; Wang, L.; Wang, D. S.; He, X. M.; Peng, Q.; Li, Y. D. Hydrothermal synthesis of orthorhombic LiMnO2 nano-particles and LiMnO2 nanorods and comparison of their electrochemical performances. Nano Res. 2009, 2, 923–930.

289

Ren, Y.; Armstrong, A. R.; Jiao, F.; Bruce, P. G. Influence of size on the rate of mesoporous electrodes for lithium batteries. J. Am. Chem. Soc. 2010, 132, 996–1004.

290

Liu, Q.; Li, Y. X.; Hu, Z. L.; Mao, D. L.; Chang, C. K.; Huang, F. Q. One-step hydrothermal routine for pure-phased orthorhombic LiMnO2 for Li ion battery application. Electrochim. Acta 2008, 53, 7298–7302.

291

He, Y.; Li, R. H.; Ding, X. K.; Jiang, L. L.; Wei, M. D. Hydrothermal synthesis and electrochemical properties of orthorhombic LiMnO2 nanoplates. J. Alloys Compd. 2010, 492, 601–604.

292

Liu, J.; Manthiram, A. Understanding the improved electrochemical performances of Fe-substituted 5 V spinel cathode LiMn1.5Ni0.5O4. J. Phys. Chem. C 2009, 113, 15073–15079.

293

Wang, H. L.; Xia, H.; Lai, M. O.; Lu, L. Enhancements of rate capability and cyclic performance of spinel LiNi0.5Mn1.5O4 by trace Ru-doping. Electrochem. Commun. 2009, 11, 1539–1542.

294

Patoux, S.; Sannier, L.; Lignier, H.; Reynier, Y.; Bourbon, C.; Jouanneau, S.; Le Cras, F.; Martinet, S. High voltage nickel manganese spinel oxides for Li-ion batteries. Electrochim. Acta 2008, 53, 4137–4145.

295

Yi, T. -F.; Zhu, Y. -R. Synthesis and electrochemistry of 5V LiNi0.4Mn1.6O4 cathode materials synthesized by different methods. Electrochim. Acta 2008, 53, 3120–3126.

296

Kim, M. G.; Jo, M.; Hong, Y. -S.; Cho, J. Template-free synthesis of Li[Ni0.25Li0.15Mn0.6]O2 nanowires for high performance lithium battery cathode. Chem. Commun. 2009, 218–220.

297

Wu, H. M.; Belharouak, I.; Abouimrane, A.; Sun, Y. -K.; Amine, K. Surface modification of LiNi0.5Mn1.5O4 by ZrP2O7 and ZrO2 for lithium-ion batteries. J. Power Sources 2010, 195, 2909–2913.

298

Arrebola, J. C.; Caballero, A.; Hernán, L.; Morales, J. A high energy Li-ion battery based on nanosized LiNi0.5Mn1.5O4 cathode material. J. Power Sources 2008, 183, 310–315.

299

Santhanam, R.; Rambabu, B. Research progress in high voltage spinel LiNi0.5Mn1.5O4 material. J. Power Sources 2010, 195, 5442–5451.

300

Arunkumar, T. A.; Manthiram, A. Influence of lattice parameter differences on the electrochemical performance of the 5 V spinel LiMn1.5−yNi0.5−z My+zO4 (M = Li, Mg, Fe, Co, and Zn). Electrochem. Solid-State Lett. 2005, 8, A403– A405.

301

Liu, J.; Manthiram, A. Improved electrochemical performance of the 5 V spinel cathode LiMn1.5Ni0.42Zn0.08O4 by surface modification. J. Electrochem. Soc. 2009, 156, A66–A72.

302

Aklalouch, M.; Amarilla, J. M.; Rojas, R. M.; Saadoune, I.; Rojo, J. M. Chromium doping as a new approach to improve the cycling performance at high temperature of 5V LiNi0.5Mn1.5O4-based positive electrode. J. Power Sources 2008, 185, 501–511.

303

Liu, J.; Manthiram, A. Understanding the improvement in the electrochemical properties of surface modified 5 V LiMn1.42Ni0.42Co0.16O4 spinel cathodes in lithium-ion cells. Chem. Mater. 2009, 21, 1695–1707.

304

Hassoun, J.; Lee, K. -S.; Sun, Y. -K.; Scrosati, B. An advanced lithium ion battery based on high performance electrode materials. J. Am. Chem. Soc. 2011, 133, 3139– 3143.

305

Hu, S. -K.; Cheng, G. -H.; Cheng, M. -Y.; Hwang, B. -J.; Santhanam, R. Cycle life improvement of ZrO2-coated spherical LiNi1/3Co1/3Mn1/3O2 cathode material for lithium ion batteries. J. Power Sources 2009, 188, 564–569.

306

Lin, B.; Wen, Z. Y.; Gu, Z. H.; Huang, S. H. Morphology and electrochemical performance of Li[Ni1/3Co1/3Mn1/3]O2 cathode material by a slurry spray drying method. J. Power Sources 2008, 175, 564–569.

307

Yabuuchi, N.; Yoshii, K.; Myung, S. -T.; Nakai, I.; Komaba, S. Detailed studies of a high-capacity electrode material for rechargeable batteries, Li2MnO3–LiCo1/3Ni1/3Mn1/3O2. J. Am. Chem. Soc. 2011, 133, 4404–4419.

308

Martha, S. K.; Sclar, H.; Szmuk Framowitz, Z.; Kovacheva, D.; Saliyski, N.; Gofer, Y.; Sharon, P.; Golik, E.; Markovsky, B.; Aurbach, D. A comparative study of electrodes comprising nanometric and submicron particles of LiNi0.50Mn0.50O2, LiNi0.33Mn0.33Co0.33O2, and LiNi0.40Mn0.40Co0.20O2 layered compounds. J. Power Sources 2009, 189, 248–255.

309

Park, S. -H.; Kang, S. -H.; Belharouak, I.; Sun, Y. K.; Amine, K. Physical and electrochemical properties of spherical Li1+x(Ni1/3Co1/3Mn1/3)1−xO2 cathode materials. J. Power Sources 2008, 177, 177–183.

310

Guo, R.; Shi, P. F.; Cheng, X. Q.; Du, C. Y. Synthesis and characterization of carbon-coated LiNi1/3Co1/3Mn1/3O2 cathode material prepared by polyvinyl alcohol pyrolysis route. J. Alloys Compd. 2009, 473, 53–59.

311

Huang, Y. Y.; Chen, J. T.; Ni, J. F.; Zhou, H. H.; Zhang, X. X. A modified ZrO2-coating process to improve electrochemical performance of Li(Ni1/3Co1/3Mn1/3)O2. J. Power Sources 2009, 188, 538–545.

312

Santhanam, R.; Rambabu, B. High rate cycling performance of Li1.05Ni1/3Co1/3Mn1/3O2 materials prepared by sol–gel and co-precipitation methods for lithium-ion batteries. J. Power Sources 2010, 195, 4313–4317.

313

Jiang, M.; Key, B.; Meng, Y. S.; Grey, C. P. Electrochemical and structural sudy of the layered, "Li-excess" lithium-ion battery electrode material Li[Li1/9Ni1/3Mn5/9]O2. Chem. Mater. 2009, 21, 2733–2745.

314

Wei, G. -Z.; Lu, X.; Ke, F. -S.; Huang, L.; Li, J. -T.; Wang, Z. -X.; Zhou, Z. -Y.; Sun, S. -G. Crystal habit-tuned nanoplate material of Li[Li1/3–2x/3NixMn2/3–x/3]O2 for high-rate performance lithium-ion batteries. Adv. Mater. 2010, 22, 4364–4367.

315

Ito, A.; Li, D. C.; Sato, Y.; Arao, M.; Watanabe, M.; Hatano, M.; Horie, H.; Ohsawa, Y. Cyclic deterioration and its improvement for Li-rich layered cathode material Li[Ni0.17Li0.2Co0.07Mn0.56]O2. J. Power Sources 2010, 195, 567–573.

316

O'Dwyer, C.; Lavayen, V.; Newcomb, S. B.; Santa Ana, M. A.; Benavente, E.; González, G.; Sotomayor Torres, C. M. Vanadate conformation variations in vanadium pentoxide nanostructures. J. Electrochem. Soc. 2007, 154, K29–K35.

317

Wang, Y.; Cao, G. Z. Synthesis and enhanced intercalation properties of nanostructured vanadium oxides. Chem. Mater. 2006, 18, 2787–2804.

318

Murphy, D.; Christian, P. Lithium incorporation by vanadium pentoxide nanoribbons. Nano Lett. 2007, 7, 490–495.

319

Delmas, C.; Cognac-Auradou, H.; Cocciantelli, J. M.; Ménétrier, M.; Doumerc, J. P. The LixV2O5 system: An overview of the structure modifications induced by the lithium intercalation. Solid State Ionics 1994, 69, 257–264.

320

Cocciantelli, J. M.; Ménétrier, M.; Delmas, C.; Doumerc, J. P.; Pouchard, M.; Broussely, M.; Labat, J. On the δ→γ irreversible transformation in Li//V2O5 secondary batteries. Solid State Ionics 1995, 78, 143–150.

321

Leger, C.; Bach, S.; Soudan, P.; Pereira-Ramos, J. -P. Structural and electrochemical properties of ω LixV2O5 (0.4≤x≤3) as rechargeable cathodic material for lithium batteries. J. Electrochem. Soc. 2005, 152, A236–A241.

322

Chan, C. K.; Peng, H. L.; Twesten, R. D.; Jarausch, K.; Zhang, X. F.; Cui, Y. Fast, completely reversible Li insertion in vanadium pentoxide nanoribbons. Nano Lett. 2007, 7, 490–495.

323

Pan, A. Q.; Zhang, J. -G.; Nie, Z. M.; Cao, G. Z.; Arey, B. W.; Li, G. S.; Liang, S. -Q.; Liu, J. Facile synthesized nanorod structured vanadium pentoxide for high-rate lithium batteries. J. Mater. Chem. 2010, 20, 9193–9199.

324

Reddy, C. V. S.; Wicker, S. A.; Walker, E. H.; Williams, Q. L.; Kalluru, R. R. Vanadium oxide nanorods for Li-ion battery applications. J. Electrochem. Soc. 2008, 155, A599–A602.

325

Zhai, T. Y.; Liu, H. M.; Li, H. Q.; Fang, X. S.; Liao, M. Y.; Li, L.; Zhou, H. S.; Koide, Y.; Bando, Y.; Golberg, D. Centimeter-long V2O5 nanowires: From synthesis to field-emission, electrochemical, electrical transport, and photoconductive properties. Adv. Mater. 2010, 22, 2547– 2552.

326

Yu, D. M.; Chen, C. G.; Xie, S. H.; Liu, Y. Y.; Park, K.; Zhou, X. Y.; Zhang, Q. F.; Li, J. Y.; Cao, G. Z. Mesoporous vanadium pentoxide nanofibers with significantly enhanced Li-ion storage properties by electrospinning. Energy Environ. Sci. 2011, 4, 858–861.

327

Liu, H. M.; Yang, W. S. Ultralong single crystalline V2O5 nanowire/graphene composite fabricated by a facile green approach and its lithium storage behavior. Energy Environ. Sci. 2011, 4, 4000–4008.

328

Cheah, Y. L.; Gupta, N.; Pramana, S. S.; Aravindan, V.; Wee, G.; Srinivasan, M. Morphology, structure and electrochemical properties of single phase electrospun vanadium pentoxide nanofibers for lithium ion batteries. J. Power Sources 2011, 196, 6465–6472.

329

Mai, L. Q.; Xu, L.; Han, C. H.; Xu, X.; Luo, Y. Z.; Zhao, S. Y.; Zhao, Y. L. Electrospun ultralong hierarchical vanadium oxide nanowires with high performance for lithium ion batteries. Nano Lett. 2010, 10, 4750–4755.

330

Cheah, Y. L.; Aravindan, V.; Madhavi, S. Improved elevated temperature performance of Al-intercalated V2O5 electrospun nanofibers for lithium-ion batteries. ACS Appl. Mater. Interfaces 2012, 4, 3270–3277.

331

Wang, H. -G.; Ma, D. -L.; Huang, Y.; Zhang, X. -B. Electrospun V2O5 nanostructures with controllable morphology as high-performance cathode materials for lithium-ion batteries. Chem. Eur. J. 2012, 18, 8987–8993.

332

Ban, C. M.; Chernova, N. A.; Whittingham, M. S. Electrospun nano-vanadium pentoxide cathode. Electrochem. Commun. 2009, 11, 522–525.

333

Zhou, F.; Zhou, X. M.; Yuan, C.; Li, L. Vanadium pentoxide nanowires: Hydrothermal synthesis, formation mechanism, and phase control parameters. Cryst. Growth Des. 2008, 8, 723–727

334

Wang, Y.; Zhang, H. J.; Lim, W. X.; Lin, J. Y.; Wong, C. C. Designed strategy to fabricate a patterned V2O5 nanobelt array as a superior electrode for Li-ion batteries. J. Mater. Chem. 2011, 21, 2362–2368.

335

Wang, Y.; Zhang, H. J.; Siah, K. W.; Wong, C. C.; Lin, J. Y.; Borgna, A. One pot synthesis of self-assembled V2O5 nanobelt membrane via capsule-like hydrated precursor as improved cathode for Li-ion battery. J. Mater. Chem. 2011, 21, 10336–10341.

336

Ragupathy, P.; Shivakumara, S.; Vasan, H. N.; Munichandraiah, N. Preparation of nanostrip V2O5 by the polyol method and its electrochemical characterization as cathode material for rechargeable lithium batteries. J. Phys. Chem. C 2008, 112, 16700–16707.

337

Rui, X. H.; Zhu, J. X.; Liu, W. L.; Tan, H. T.; Sim, D. H.; Xu, C.; Zhang, H.; Ma, J.; Hng, H. H.; Lim, T. M.; et al. Facile preparation of hydrated vanadium pentoxide nanobelts based bulky paper as flexible binder-free cathodes for high-performance lithium ion batteries. RSC Adv. 2011, 1, 117–122.

338

Mohan, V. M.; Hu, B.; Qiu, W. L.; Chen, W. Synthesis, structural, and electrochemical performance of V2O5 nanotubes as cathode material for lithium battery. J. Appl. Electrochem. 2009, 39, 2001–2006.

339

O'Dwyer, C.; Lavayen, V.; Newcomb, S. B.; Benavente, E.; Santa Ana, M. A.; González, G.; Sotomayor Torres, C. M. Atomic layer structure of vanadium oxide nanotubes grown on nanourchin structures. Electrochem. Solid-State Lett. 2007, 10, A111–A114.

340

Zhang, X. -F.; Wang, K. -X.; Wei, X.; Chen, J. -S. Carbon-coated V2O5 nanocrystals as high performance cathode material for lithium ion batteries. Chem. Mater. 2011, 23, 5290–5292.

341

Wang, S. Q.; Lu, Z. D.; Wang, D.; Li, C. G.; Chen, C. H.; Yin, Y. D. Porous monodisperse V2O5 microspheres as cathode materials for lithium-ion batteries. J. Mater. Chem. 2011, 21, 6365–6369.

342

Sasidharan, M.; Gunawardhana, N.; Yoshio, M.; Nakashima, K. V2O5 hollow nanospheres: A lithium intercalation host with good rate capability and capacity retention. J. Electrochem. Soc. 2012, 159, A618–A621.

343

Liu, J.; Xia, H.; Xue, D. F.; Lu, L. Double-shelled nanocapsules of V2O5-based composites as high-performance anode and cathode materials for Li ion batteries. J. Am. Chem. Soc. 2009, 131, 12086–12087.

344

O'Dwyer, C.; Navas, D.; Lavayen, V.; Benavente, E.; Santa Ana, M. A.; González, G.; Newcomb, S. B.; Sotomayor Torres, C. M. Nano-urchin: The formation and structure of high-density spherical clusters of vanadium oxide nanotubes. Chem. Mater. 2006, 18, 3016–3022.

345

Lavayen, V.; O'Dwyer, C.; Santa Ana, M. A.; Newcomb, S. B.; Benavente, E.; González, G.; Sotomayor Torres, C. M. Comparative structural–vibrational study of nano-urchin and nanorods of vanadium oxide. Phys. Status Solidi(b) 2006, 243, 3285–3289.

346

Lee, J. -K.; Kim, G. -P.; Song, I. K.; Baeck, S. -H. Electrodeposition of mesoporous V2O5 with enhanced lithium-ion intercalation property. Electrochem. Commun. 2009, 11, 1571–1574.

347

Wang, S. Q.; Li, S. R.; Sun, Y.; Feng, X. Y.; Chen, C. H. Three-dimensional porous V2O5 cathode with ultra high rate capability. Energy Environ. Sci. 2011, 4, 2854–2857.

348

Hu, Y. -S.; Liu, X.; Müller, J. -O.; Schlögl, R.; Maier, J.; Su, D. S. Synthesis and electrode performance of nanostructured V2O5 by using a carbon tube-in-tube as a nanoreactor and an efficient mixed-conducting network. Angew. Chem. Int. Ed. 2008, 48, 210–214.

349

Sathiya, M.; Prakash, A. S.; Ramesha, K.; Tarascon, J. -M.; Shukla, A. K. V2O5-anchored carbon nanotubes for enhanced electrochemical energy storage. J. Am. Chem. Soc. 2011, 133, 16291–16299.

350

Du, G. D.; Seng, K. H.; Guo, Z. P.; Liu, J.; Li, W. X.; Jia, D. Z.; Cook, C.; Liu, Z. W.; Liu, H. K. Graphene– V2O5·nH2O xerogel composite cathodes for lithium ion batteries. RSC Adv. 2011, 1, 690–697.

351

Liu, D. W.; Liu, Y. Y.; Pan, A. Q.; Nagle, K. P.; Seidler, G. T.; Jeong, Y. -H.; Cao, G. Z. Enhanced lithium-ion intercalation properties of V2O5 xerogel electrodes with surface defects. J. Phys. Chem. C 2011, 115, 4959–4965.

352

Liu, Y. Y.; Clark, M.; Zhang, Q. F.; Yu, D. M.; Liu, D. W.; Liu, J.; Cao, G. W. V2O5 nano-electrodes with high power and energy densities for thin film Li-ion batteries. Adv. Energy Mater. 2011, 1, 194–202.

353

Dewangan, K.; Sinha, N. N.; Chavan, P. G.; Sharma, P. K.; Pandey, A. C.; More, M. A.; Joag, D. S.; Munichandraiah, N.; Gajbhiye, N. S. Synthesis and characterization of self-assembled nanofiber-bundles of V2O5: Their electrochemical and field emission properties. Nanoscale 2012, 4, 645–651.

354

Seng, K. H.; Liu, J.; Guo, Z. P.; Chen, Z. X.; Jia, D. Z.; Liu, H. K. Free-standing V2O5 electrode for flexible lithium ion batteries. Electrochem. Commun. 2011, 13, 383–386.

355

Li, D.; Xia, Y. Electrospinning of nanofibers: Reinventing the wheel? Adv. Mater. 2004, 16, 1151–1170.

356

Greiner, A.; Wendorff, J. H. Electrospinning: A fascinating method for the preparation of ultrathin fibers. Angew. Chem. Int. Ed. 2007, 46, 5670–703.

357

Cao, J.; Choi, J.; Musfeldt, J. L. Effect of sheet distance on the optical properties of vanadate nanotubes. Chem. Mater. 2004, 16, 731–736.

358

Petkov, V.; Zavalij, P. Y.; Lutta, S.; Whittingham, M. S.; Parvanov, V.; Shastri, S. Structure beyond Bragg: Study of V2O5 nanotubes. Phys. Rev. B 2004, 69, 085410.

359

O'Dwyer, C.; Lavayen, V.; Tanner, D. A.; Newcomb, S. B.; Benavente, E.; González, G.; Torres, C. M. S. Reduced surfactant uptake in three dimensional assemblies of VOx nanotubes improves reversible Li+ intercalation and charge capacity. Adv. Funct. Mater. 2009, 19, 1736–1745.

360

Livage, J. Vanadium pentoxide gels. Chem. Mater. 1991, 3, 578–593.

361

Zhang, X. F.; Wang, K. X.; Wei, X.; Chen, J. S. Carbon-coated V2O5 nanocrystals as high performance cathode material for lithium ion batteries. Chem. Mater. 2011, 23, 5290–5292.

362

Wadsley, A. D. Crystal chemistry of non-stoichiometric pentavalent vandadium oxides: Crystal structure of Li1+xV3O8. Acta Crystallogr. 1957, 10, 261–267.

363

Pan, A.; Liu, J.; Zhang, J. G.; Cao, G.; Xu, W.; Nie, Z.; Jie, X.; Choi, D.; Arey, B. W.; Wang, C.; et al. Template free synthesis of LiV3O8 nanorods as a cathode material for high-rate secondary lithium batteries. J. Mater. Chem. 2011, 21, 1153–1161.

364

Sakunthala, A.; Reddy, M.; Selvasekarapandian, S.; Chowdari, B.; Selvin, P. C. Preparation, characterization, and electrochemical performance of lithium trivanadate rods by a surfactant-assisted polymer precursor method for lithium batteries. J. Phys. Chem. C 2010, 114, 8099–8107.

365

Ju, S. H.; Kang, Y. C. Morphological and electrochemical properties of LiV3O8 cathode powders prepared by spray pyrolysis. Electrochim. Acta 2010, 55, 6088–6092.

366

Liu, H. M.; Wang, Y. G.; Wang, K. X.; Wang, Y. R.; Zhou, H. S. Synthesis and electrochemical properties of single-crystalline LiV3O8 nanorods as cathode materials for rechargeable lithium batteries. J. Power Sources 2009, 192, 668–673.

367

Qiao, Y. Q.; Wang, X. L.; Zhou, J. P.; Zhang, J.; Gu, C. D.; Tu, J. P. Synthesis and electrochemical performance of rod-like LiV3O8 cathode materials for rechargeable lithium batteries. J. Power Sources 2012, 198, 287–293.

368

Shi, Q.; Liu, J. W.; Hu, R. Z.; Zeng, M. Q.; Dai, M. J.; Zhu, M. An amorphous wrapped nanorod LiV3O8 electrode with enhanced performance for lithium ion batteries. RSC Adv. 2012, 2, 7273–7278.

369

Xu, X.; Luo, Y. Z.; Mai, L. Q.; Zhao, Y. L.; An, Q. Y.; Xu, L.; Hu, F.; Zhang, L.; Zhang, Q. J. Topotactically synthesized ultralong LiV3O8 nanowire cathode materials for high-rate and long-life rechargeable lithium batteries. NPG Asia. Mater. 2012, 4, e20.

370

Wang, H. Y.; Ren, Y.; Wang, Y.; Wang, W. J.; Liu, S. Q. Synthesis of LiV3O8 nanosheets as a high-rate cathode material for rechargeable lithium batteries. CrystEngComm. 2012, 14, 2831–2836.

371

Pan, A.; Zhang, J. G.; Cao, G.; Liang, S.; Wang, C.; Nie, Z.; Arey, B. W.; Xu, W.; Liu, D.; Xiao, J.; Li, G.; Liu, J. Nanosheet-structured LiV3O8 with high capacity and excellent stability for high energy lithium batteries. J. Mater. Chem. 2011, 21, 10077–10084.

372

Patey, T. J.; Ng, S. H.; Büchel, R.; Tran, N.; Krumeich, F.; Wang, J.; Liu, H. K.; Novák, P. Electrochemistry of LiV3O8 nanoparticles made by flame spray pyrolysis. Electrochem. Solid-State Lett. 2008, 11, A46–A50.

373

Padhi, A. K.; Nanjundaswamy, K. S.; Goodenough, J. B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J. Electrochem. Soc. 1997, 144, 1188–1194.

374

Wang, Y. G.; He, P.; Zhou, H. S. Olivine LiFePO4: Development and future. Energy. Environ. Sci. 2011, 4, 805–817.

375

Zhang, W. J. Structure and performance of LiFePO4 cathode materials: A review. J. Power Sources 2011, 196, 2962– 2970.

376

Li, Z.; Zhang, D.; Yang, F. Developments of lithium-ion batteries and challenges of LiFePO4 as one promising cathode material. J. Mater. Sci. 2009, 44, 2435–2443.

377

Kang, B.; Ceder, G. Battery materials for ultrafast charging and discharging. Nature 2009, 458, 190–193.

378

Gong, Z. L.; Yang, Y. Recent advances in the research of polyanion-type cathode materials for Li-ion batteries. Energy. Environ. Sci. 2011, 4, 3223–3242.

379

Bhuvaneswari, M. S.; Bramnik, N. N.; Ensling, D.; Ehrenberg, H.; Jaegermann, W. Synthesis and characterization of carbon nano fiber/LiFePO4 composites for Li-ion batteries. J. Power Sources 2008, 180, 553–560.

380

Konarova, M.; Taniguchi, I. Synthesis of carbon-coated LiFePO4 nanoparticles with high rate performance in lithium secondary batteries. J. Power Sources 2010, 195, 3661–3667.

381

Doherty, C. M.; Caruso, R. A.; Smarsly, B. M.; Adelhelm, P.; Drummond, C. J. Hierarchically porous monolithic LiFePO4/carbon composite electrode materials for high power lithium ion batteries. Chem. Mater. 2009, 21, 5300–5306.

382

Lu, C. Z.; Fey, G. T. K.; Kao, H. M. Study of LiFePO4 cathode materials coated with high surface area carbon. J. Power Sources 2009, 189, 155–162.

383

Zhao, B.; Jiang, Y.; Zhang, H. J.; Tao, H.; Zhong, M.; Jiao, Z. Morphology and electrical properties of carbon coated LiFePO4 cathode materials. J. Power Sources 2009, 189, 462–466.

384

Wang, Y.; Wang, Y.; Hosono, E.; Wang, K.; Zhou, H. The design of a LiFePO4/carbon nanocomposite with a core–shell structure and its synthesis by an in situ polymerization restriction method. Angew. Chem. Int. Edit. 2008, 47, 7461–7465.

385

Chen, J. M.; Hsu, C. H.; Lin, Y. R.; Hsiao, M. H.; Fey, G. T. K. High-power LiFePO4 cathode materials with a continuous nano carbon network for lithium-ion batteries. J. Power Sources 2008, 184, 498–502.

386

Ferrari, S.; Lavall, R. L.; Capsoni, D.; Quartarone, E.; Magistris, A.; Mustarelli, P.; Canton, P. Influence of particle size and crystal orientation on the electrochemical behavior of carbon-coated LiFePO4. J. Phys. Chem. C 2010, 114, 12598–12603.

387

Joachin, H.; Kaun, T. D.; Zaghib, K.; Prakash, J. Electrochemical and thermal studies of carbon-coated LiFePO4 cathode. J. Electrochem. Soc. 2009, 156, A401– A406.

388

Muraliganth, T.; Murugan, A. V.; Manthiram, A. Nanoscale networking of LiFePO4 nanorods synthesized by a microwave-solvothermal route with carbon nanotubes for lithium ion batteries. J. Mater. Chem. 2008, 18, 5661–5668.

389

Kuwahara, A.; Suzuki, S.; Miyayama, M. High-rate properties of LiFePO4/carbon composites as cathode materials for lithium-ion batteries. Ceram. Int. 2008, 34, 863–866.

390

Cho, Y. D.; Fey, G. T. K.; Kao, H. M. The effect of carbon coating thickness on the capacity of LiFePO4/C composite cathodes. J. Power Sources 2009, 189, 256–262.

391

Wu, X. L.; Jiang, L. Y.; Cao, F. F.; Guo, Y. G.; Wan, L. J. LiFePO4 nanoparticles embedded in a nanoporous carbon matrix: Superior cathode material for electrochemical energy-storage devices. Adv. Mater. 2009, 21, 2710–2714.

392

Zhu, C. B.; Yu, Y.; Gu, L.; Weichert, K.; Maier, J. Electrospinning of highly electroactive carbon-coated single-crystalline LiFePO4 nanowires. Angew. Chem. Int. Edit. 2011, 50, 6278–6282.

393

Liu, Y. Y.; Cao, C. B.; Li, J. Enhanced electrochemical performance of carbon nanospheres–LiFePO4 composite by PEG based sol–gel synthesis. Electrochim. Acta 2010, 55, 3921–3926.

394

Wang, K. H.; Cai, R. T.; Yuan, T. Y.; Yu, X.; Ran, R.; Shao, Z. W. Process investigation, electrochemical characterization and optimization of LiFePO4/C composite from mechanical activation using sucrose as carbon source. Electrochim. Acta 2009, 54, 2861–2868.

395

Chen, Z.; Zhu, H.; Ji, S.; Fakir, R.; Linkov, V. Influence of carbon sources on electrochemical performances of LiFePO4/C composites. Solid State Ionics 2008, 179, 1810–1815.

396

Dong, Y. Z.; Zhao, Y. M.; Chen, Y. H.; He, Z. F.; Kuang, Q. Optimized carbon-coated LiFePO4 cathode material for lithium-ion batteries. Mater. Chem. Phys. 2009, 115, 245–250.

397

Kim, J. K.; Cheruvally, G.; Ahn, J. H.; Hwang, G. C.; Choi, J. B. Electrochemical properties of carbon-coated LiFePO4 synthesized by a modified mechanical activation process. J. Phys. Chem. Solids. 2008, 69, 2371–2377.

398

Zhang, Y.; Feng, H.; Wu, X. B.; Wang, L. Z.; Zhang, A. Q.; Xia, T.; Dong, H.; Liu, M. H. One-step microwave synthesis and characterization of carbon-modified nanocrystalline LiFePO4. Electrochim. Acta 2009, 54, 3206–3210.

399

Zhou, Y. K.; Wang, J.; Hu, Y. Y.; O'Hayre, R.; Shao, Z. A porous LiFePO4 and carbon nanotube composite. Chem. Commun. 2010, 46, 7151–7153.

400

Liu, Y. J.; Li, X. H.; Guo, H.; Wang, Z. X.; Peng, W. J.; Yang, Y.; Liang, R. F. Effect of carbon nanotube on the electrochemical performance of C-LiFePO4/graphite battery. J. Power Sources 2008, 184, 522–526.

401

Liu, H.; Tang, D. The low cost synthesis of nanoparticles LiFePO4/C composite for lithium rechargeable batteries. Solid. State. Ionics. 2008, 179, 1897–1901.

402

Saravanan, K.; Balaya, P.; Reddy, M. V.; Chowdari, B. V. R.; Vittal, J. J. Morphology controlled synthesis of LiFePO4/C nanoplates for Li-ion batteries. Energy Environ. Sci. 2010, 3, 457–464.

403

Murugan, A. V.; Muraliganth, T.; Manthiram, A. Comparison of microwave assisted solvothermal and hydrothermal syntheses of LiFePO4/C nanocomposite cathodes for lithium ion batteries. J. Phys. Chem. C 2008, 112, 14665–14671.

404

Kadoma, Y.; Kim, J. -M.; Abiko, K.; Ohtsuki, K.; Ui, K.; Kumagai, N. Optimization of electrochemical properties of LiFePO4/C prepared by an aqueous solution method using sucrose. Electrochim. Acta 2010, 55, 1034–1041.

405

Yan, X.; Yang, G.; Liu, J.; Ge, Y.; Xie, H.; Pan, X.; Wang, R. An effective and simple way to synthesize LiFePO4/C composite. Electrochim. Acta 2009, 54, 5770–5774.

406

Wang, G.; Liu, H.; Liu, J.; Qiao, S.; Lu, G. M.; Munroe, P.; Ahn, H. Mesoporous LiFePO4/C nanocomposite cathode materials for high power lithium ion batteries with superior performance. Adv. Mater. 2010, 22, 4944–4948.

407

Yu, F.; Zhang, J.; Yang, Y.; Song, G. Preparation and characterization of mesoporous LiFePO4/C microsphere by spray drying assisted template method. J. Power Sources 2009, 189, 794–797.

408

Yu, F.; Zhang, J. J.; Yang, Y. F.; Song, G. Z. Up-scalable synthesis, structure and charge storage properties of porous microspheres of LiFePO4@C nanocomposites. J. Mater. Chem. 2009, 19, 9121–1925.

409

Huang, Y.; Ren, H.; Yin, S.; Wang, Y.; Peng, Z.; Zhou, Y. Synthesis of LiFePO4/C composite with high-rate performance by starch sol assisted rheological phase method. J. Power Sources 2010, 195, 610–613.

410

Chang, Z. R.; Lv, H. J.; Tang, H. W.; Li, H. J.; Yuan, X. -Z.; Wang, H. Synthesis and characterization of high-density LiFePO4/C composites as cathode materials for lithium-ion batteries. Electrochim. Acta 2009, 54, 4595–4599.

411

Gao, F.; Tang, Z. Kinetic behavior of LiFePO4/C cathode material for lithium-ion batteries. Electrochim. Acta 2008, 53, 5071–5075.

412

Wang, Y. R.; Yang, Y. F.; Hu, X.; Yang, Y. B.; Shao, H. X. Electrochemical performance of Ru-doped LiFePO4/C cathode material for lithium-ion batteries. J. Alloys Compd. 2009, 481, 590–594.

413

Beninati, S.; Damen, L.; Mastragostino, M. Fast sol–gel synthesis of LiFePO4/C for high power lithium-ion batteries for hybrid electric vehicle application. J. Power Sources 2009, 194, 1094–1098.

414

Sun, C. S.; Zhou, Z.; Xu, Z. G.; Wang, D. G.; Wei, J. P.; Bian, X. K.; Yan, J. Improved high-rate charge/discharge performances of LiFePO4/C via V-doping. J. Power Sources 2009, 193, 841–845.

415

Yu, F. Z.; Zhang, J.; Yang, Y.; Song, G. Porous micro-spherical aggregates of LiFePO4/C nanocomposites: A novel and simple template-free concept and synthesis via sol–gel-spray drying method. J. Power Sources 2010, 195, 6873–6878.

416

Oh, S. W.; Myung, S. T.; Oh, S. M.; Oh, K. H.; Amine, K.; Scrosati, B.; Sun, Y. K. Double carbon coating of LiFePO4 as high rate electrode for rechargeable lithium batteries. Adv. Mater. 2010, 22, 4842–4845.

417

Lai, C. W.; Xu, Q.; Ge, H.; Zhou, G.; Xie, J. H. Improved electrochemical performance of LiFePO4/C for lithium-ion batteries with two kinds of carbon sources. Solid State Ionics 2008, 179, 1736–1739.

418

Liu, J. H.; Wang, J.; Yan, X.; Zhang, X. Y.; Yang, G.; Jalbout, A. F.; Wang, R. Long-term cyclability of LiFePO4/carbon composite cathode material for lithium-ion battery applications. Electrochim. Acta 2009, 54, 5656–5659.

419

Jin, B.; Gu, H. -B.; Zhang, W.; Park, K. H.; Sun, G. Effect of different carbon conductive additives on electrochemical properties of LiFePO4–C/Li batteries. J. Solid State Electrochem. 2008, 12, 1549–1554.

420

Wu, Y. M.; Wen, Z. H.; Li, J. H. Hierarchical carbon-coated LiFePO4 nanoplate microspheres with high electrochemical performance for Li-ion batteries. Adv. Mater. 2011, 23, 1126–1129.

421

Delmas, C.; Maccario, M.; Croguennec, L.; Le Cras, F.; Weill, F. Lithium deintercalation in LiFePO4 nanoparticles via a domino-cascade model. Nat. mater. 2008, 7, 665–671.

422

Yamada, A.; Koizumi, H.; Nishimura, S. -I.; Sonoyama, N.; Kanno, R.; Yonemura, M.; Nakamura, T.; Kobayashi, Y. Room-temperature miscibility gap in LixFePO4. Nat. Mater. 2006, 5, 357–360.

423

Malik, R.; Zhou, F.; Ceder, G. Kinetics of non-equilibrium lithium incorporation in LiFePO4. Nat. Mater. 2011, 10, 587–590.

424

Nishimura, S.; Kobayashi, G.; Ohoyama, K.; Kanno, R.; Yashima, M.; Yamada, A. Experimental visualization of lithium diffusion in LixFePO4. Nat. Mater. 2008, 7, 707–711.

425

Gibot, P.; Casas-Cabanas, M.; Laffont, L.; Levasseur, S.; Carlach, P.; Hamelet, S.; Tarascon, J. -M.; Masquelier, C. Room-temperature single-phase Li insertion/extraction in nanoscale LixFePO4. Nat. Mater. 2008, 7, 741–747.

426

Hosono, E.; Wang, Y.; Kida, N.; Enomoto, M.; Kojima, N.; Okubo, M.; Matsuda, H.; Saito, Y.; Kudo, T.; Honma, I.; Zhou, H. Synthesis of triaxial LiFePO4 nanowire with a VGCF core column and a carbon shell through the electrospinning method. ACS Appl. Mater. Interfaces 2010, 2, 212–218.

427

Lim, S.; Yoon, C. S.; Cho, J. Synthesis of nanowire and hollow LiFePO4 cathodes for high-performance lithium batteries. Chem. Mater. 2008, 20, 4560–4564.

428

Recham, N.; Dupont, L.; Courty, M.; Djellab, K.; Larcher, D.; Armand, M.; Tarascon, J. -M. Ionothermal synthesis of tailor-made LiFePO4 powders for Li-ion battery applications. Chem. Mater. 2009, 21, 1096–1107.

429

Konarova, M.; Taniguchi, I. Physical and electrochemical properties of LiFePO4 nanoparticles synthesized by a combination of spray pyrolysis with wet ball-milling. J. Power Sources 2009, 194, 1029–1035.

430

Doherty, C. M.; Caruso, R. A.; Smarsly, B. M.; Drummond, C. J. Colloidal crystal templating to produce hierarchically porous LiFePO4 electrode materials for high power lithium ion batteries. Chem. Mater. 2009, 21, 2895–2903.

431

Zheng, J. C.; Li, X. H.; Wang, Z.; Guo, H.; Zhou, S. Y. LiFePO4 with enhanced performance synthesized by a novel synthetic route. J. Power Sources 2008, 184, 574–577.

432

Qin, X.; Wang, X. H.; Xiang, H. M.; Xie, J. Mechanism for hydrothermal synthesis of LiFePO4 platelets as cathode material for lithium-ion batteries. J. Phys. Chem. C 2010, 114, 16806–16812.

433

Jin, B.; Gu, H. B. Preparation and characterization of LiFePO4 cathode materials by hydrothermal method. Solid State Ionics 2008, 178, 1907–1914.

434

Yang, H.; Wu, X. L.; Cao, M. H.; Guo, Y. G. Solvothermal synthesis of LiFePO4 hierarchically dumbbell-like microstructures by nanoplate self-assembly and their application as a cathode material in lithium-ion batteries. J. Phys. Chem. C 2009, 113, 3345–3351.

435

Liu, H. W.; Yang, H. Y.; Li, J. L. A novel method for preparing LiFePO4 nanorods as a cathode material for lithium-ion power batteries. Electrochim. Acta 2010, 55, 1626–1629.

436

Bilecka, I.; Hintennach, A.; Djerdj, I.; Novák, P.; Niederberger, M. Efficient microwave-assisted synthesis of LiFePO4 mesocrystals with high cycling stability. J. Mater. Chem. 2009, 19, 5125–5128.

437

Sun, C.; Rajasekhara, S.; Goodenough, J. B.; Zhou, F. Monodisperse porous LiFePO4 microspheres for a high power Li-ion battery cathode. J. Am. Chem. Soc. 2011, 133, 2132–2135.

438

Huang, Y. H.; Goodenough, J. B. High-rate LiFePO4 lithium rechargeable battery promoted by electrochemically active polymers. Chem. Mater. 2008, 20, 7237–7241.

439

Qian, J. F.; Zhou, M.; Cao, Y. L.; Ai, X. P.; Yang, H. X. Template-free hydrothermal synthesis of nanoembossed mesoporous LiFePO4 microspheres for high-performance lithium-ion batteries. J. Phys. Chem. C. 2010, 114, 3477– 3482.

440

Yang, S.; Zhou, X.; Zhang, J.; Liu, Z. Morphology-controlled solvothermal synthesis of LiFePO4 as a cathode material for lithium-ion batteries. J. Mater. Chem. 2010, 20, 8086–8091.

441

Saravanan, K.; Reddy, M. V.; Balaya, P.; Gong, H.; Chowdari, B. V. R.; Vittal, J. J. Storage performance of LiFePO4 nanoplates. J. Mater. Chem. 2009, 19, 605–610.

442

Ni, J.; Morishita, M.; Kawabe, Y.; Watada, M.; Takeichi, N.; Sakai, T. Hydrothermal preparation of LiFePO4 nanocrystals mediated by organic acid. J. Power Sources 2010, 195, 2877–2882.

443

Zhou, X.; Wang, F.; Zhu, Y.; Liu, Z. Graphene modified LiFePO4 cathode materials for high power lithium ion batteries. J. Mater. Chem. 2011, 21, 3353–3358.

444

Liu, H.; Wang, G. X.; Wexler, D.; Wang, J. Z.; Liu, H. K. Electrochemical performance of LiFePO4 cathode material coated with ZrO2 nanolayer. Electrochem. Commun. 2008, 10, 165–169.

445

Malik, R.; Burch, D.; Bazant, M.; Ceder, G. Particle size dependence of the ionic diffusivity. Nano Lett. 2010, 10, 4123–4127.

446

Amin, R.; Maier, J.; Balaya, P.; Chen, D. P.; Lin, C. T. Ionic and electronic transport in single crystalline LiFePO4 grown by optical floating zone technique. Solid State Ionics 2008, 179, 1683–1687.

447

Oh, S. M.; Oh, S. W.; Yoon, C. S.; Scrosati, B.; Amine, K.; Sun, Y. -K. High-performance carbon–LiMnPO4 nanocomposite cathode for lithium batteries. Adv. Funct. Mater. 2010, 20, 3260–3265.

448

Li, G.; Azuma, H.; Tohda, M. LiMnPO4 as the cathode for lithium batteries. Electrochem. Solid State Lett. 2002, 5, A135–A137.

449

Bakenov, Z.; Taniguchi, I. Electrochemical performance of nanocomposite LiMnPO4/C cathode materials for lithium batteries. Electrochem. Commun. 2010, 12, 75–78.

450

Fang, H. S.; Pan, Z. Y.; Li, L. P.; Yang, Y.; Yan, G. F.; Li, G. S.; Wei, S. Q. The possibility of manganese disorder in LiMnPO4 and its effect on the electrochemical activity. Electrochem. Commun. 2008, 10, 1071–1073.

451

Vadivel Murugan, A.; Muraliganth, T.; Ferreira, P. J.; Manthiram, A. Dimensionally modulated, single-crystalline LiMPO4 (M = Mn, Fe, Co, and Ni) with nano-thumblike shapes for high-power energy storage. Inorg. Chem. 2009, 48, 946–52.

452

Drezen, T.; Kwon, N. -H.; Bowen, P.; Teerlinck, I.; Isono, M.; Exnar, I. Effect of particle size on LiMnPO4 cathodes. J. Power Sources 2007, 174, 949–953.

453

Wang, D.; Buqa, H.; Crouzet, M.; Deghenghi, G.; Drezen, T.; Exnar, I.; Kwon, N. -H.; Miners, J. H.; Poletto, L.; Grätzel, M. High-performance, nano-structured LiMnPO4 synthesized via a polyol method. J. Power Sources 2009, 189, 624–628.

454

Bakenov, Z.; Taniguchi, I. Physical and electrochemical properties of LiMnPO4/C composite cathode prepared with different conductive carbons. J. Power Sources 2010, 195, 7445–7451.

455

Chen, G.; Richardson, T. J. Thermal instability of olivine-type LiMnPO4 cathodes. J. Power Sources 2010, 195, 1221–1224.

456

Wang, D.; Ouyang, C.; Drézen, T.; Exnar, I.; Kay, A.; Kwon, N. -H.; Gouerec, P.; Miners, J. H.; Wang, M.; Grätzel, M. Improving the electrochemical activity of LiMnPO4 via Mn-site substitution. J. Electrochem. Soc. 2010, 157, A225–A229.

457

Delacourt, C.; Laffont, L.; Bouchet, R.; Wurm, C.; Leriche, J. -B.; Morcrette, M.; Tarascon, J. -M.; Masquelier, C. Toward understanding of electrical limitations (electronic, ionic) in LiMPO4 (M = Fe, Mn) electrode materials. J. Electrochem. Soc. 2005, 152, A913–A921.

458

Choi, D.; Wang, D.; Bae, I. T.; Xiao, J.; Nie, Z.; Wang, W.; Viswanathan, V. V.; Lee, Y. J.; Zhang, J. G.; Graff, G. L.; et al. LiMnPO4 nanoplate grown via solid-state reaction in molten hydrocarbon for Li-ion battery cathode. Nano. Lett. 2010, 10, 2799–2805.

459

Chen, G.; Wilcox, J. D.; Richardson, T. J. Improving the performance of lithium manganese phosphate through divalent cation substitution. Electrochem. Solid State Lett. 2008, 11, A190–A194.

460

Allen, C.; Jia, Q.; Chinnasamy, C. Synthesis, structure and electrochemistry of lithium vanadium phosphate cathode materials. J. Electrochem. Soc. 2011, 158, 1250–1259.

461

Yang, Y.; Fang, H. S.; Zheng, J.; Li, L. P.; Li, G.; Yan, G. F. Towards the understanding of poor electrochemical activity of triclinic LiVOPO4: Experimental characterization and theoretical investigations. Solid State Sci. 2008, 10, 1292– 1298.

462

Azmi, B. M.; Ishihara, T.; Nishiguchi, H.; Takita, Y. LiVOPO4 as a new cathode materials for Li-ion rechargeable battery. J. Power Sources 2005, 146, 525–528.

463

Ren, M.; Zhou, Z.; Su, L. W.; Gao, X. W. LiVOPO4: A cathode material for 4V lithium ion batteries. J. Power Sources 2009, 189, 786–789.

464

Gover, R.; Burns, P.; Bryan, A.; Saidi, M.; Swoyer, J.; Barker, J. LiVPO4F: A new active material for safe lithium-ion batteries. Solid State Ionics 2006, 177, 2635–2638.

465

Zheng, J.; Zhang, B.; Yang, Z. Novel synthesis of LiVPO4F cathode material by chemical lithiation and postannealing. J. Power Sources 2012, 202, 380–383.

466

Pan, A.; Liu, J.; Zhang, J. G.; Xu, W.; Cao, G.; Nie, Z.; Arey, B. W.; Liang, S. Nano-structured Li3V2(PO4)3/carbon composite for high-rate lithium-ion batteries. Electrochem. Commun. 2010, 12, 1674–1677.

467

Wang, L.; Zhang, L. C.; Lieberwirth, I.; Xu, H. W.; Chen, C. H. A Li3V2(PO4)3/C thin film with high rate capability as a cathode material for lithium-ion batteries. Electrochem. Commun. 2010, 12, 52–55.

468

Zhou, X.; Liu, Y.; Guo, Y. Effect of reduction agent on the performance of Li3V2(PO4)3/C positive material by one-step solid-state reaction. Electrochim. Acta 2009, 54, 2253–2258.

469

Qiao, Y. Q.; Wang, X. L.; Zhou, Y.; Xiang, J. Y.; Zhang, D.; Shi, S. J.; Tu, J. P. Electrochemical performance of carbon-coated Li3V2(PO4)3 cathode materials derived from polystyrene-based carbon-thermal reduction synthesis. Electrochim. Acta 2010, 56, 510–516.

470

Wang, J. W.; Liu, J.; Yang, G. L.; Zhang, X. F.; Yan, X. F.; Pan, X.; Wang, R. S. Electrochemical performance of Li3V2(PO4)3/C cathode material using a novel carbon source. Electrochim. Acta 2009, 54, 6451–6454.

471

Qiao, Y. Q.; Wang, X. L.; Xiang, J. Y.; Zhang, D.; Liu, W. L.; Tu, J. P. Electrochemical performance of Li3V2(PO4)3/C cathode materials using stearic acid as a carbon source. Electrochim. Acta 2011, 56, 2269–2275.

472

Rui, X. H.; Ding, N.; Liu, J.; Li, C.; Chen, C. H. Analysis of the chemical diffusion coefficient of lithium ions in Li3V2(PO4)3 cathode material. Electrochim. Acta 2010, 55, 2384–2390.

473

Rui, X. H.; Li, C.; Chen, C. H. Synthesis and characterization of carbon-coated Li3V2(PO4)3 cathode materials with different carbon sources. Electrochim. Acta 2009, 54, 3374–3380.

474

Chang, C. X.; Xiang, J. F.; Shi, X. X.; Han, X. Y.; Yuan, L. J.; Sun, J. T. Rheological phase reaction synthesis and electrochemical performance of Li3V2(PO4)3/carbon cathode for lithium ion batteries. Electrochim. Acta 2008, 53, 2232– 2237.

475

Jiang, T.; Pan, W. C.; Wang, J.; Bie, X. F.; Du, F.; Wei, Y. J.; Wang, C.; Chen, G. Carbon coated Li3V2(PO4)3 cathode material prepared by a PVA assisted sol–gel method. Electrochim. Acta 2010, 55, 3864–3869.

476

Chen, Y. H.; Zhao, Y. M.; An, X. N.; Liu, J. M.; Dong, Y. Z.; Chen, L. Preparation and electrochemical performance studies on Cr-doped Li3V2(PO4)3 as cathode materials for lithium-ion batteries. Electrochim. Acta 2009, 54, 5844–5850.

477

Rui, X. H.; Li, C.; Liu, J.; Cheng, T.; Chen, C. H. The Li3V2(PO4)3/C composites with high-rate capability prepared by a maltose-based sol–gel route. Electrochim. Acta 2010, 55, 6761–6767.

478

Kuang, Q.; Zhao, Y. M.; An, X. N.; Liu, J. N.; Dong, Y. Z.; Chen, L. Synthesis and electrochemical properties of Co-doped Li3V2(PO4)3 cathode materials for lithium-ion batteries. Electrochim. Acta 2010, 55, 1575–1581.

479

Wang, L. N.; Li, Z. C.; Xu, H. J.; Zhang, K. L. Studies of Li3V2(PO4)3 additives for the LiFePO4-based Li ion batteries. J. Phys. Chem. C 2008, 112, 308–312.

480

Ren, M. M.; Zhou, Z.; Gao, X. P.; Peng, W. X.; Wei, J. P. Core–Shell Li3V2(PO4)3@C composites as cathode materials for lithium-ion batteries. J. Phys. Chem. C 2008, 112, 5689–5693.

481

Zheng, J. -C.; Li, X. -H.; Wang, Z. -X.; Guo, H. -J.; Hu, Q. -Y.; Peng, W. -J. Li3V2(PO4)3 cathode material synthesized by chemical reduction and lithiation method. J. Power Sources 2009, 189, 476–479.

482

Zhang, L.; Wang, X. L.; Xiang, J. Y.; Zhou, Y.; Shi, S. J.; Tu, J. P. Synthesis and electrochemical performances of Li3V2(PO4)3/(Ag+C) composite cathode. J. Power Sources 2010, 195, 5057–5061.

483

Tang, A. P.; Wang, X. Y.; Liu, Z. M. Electrochemical behavior of Li3V2(PO4)3/C composite cathode material for lithium-ion batteries. Mater. Lett. 2008, 62, 1646–1648.

484

Liu, H. D.; Gao, P.; Fang, J. H.; Yang, G. Li3V2(PO4)3/graphene nanocomposites as cathode material for lithium ion batteries. Chem. Commun. 2011, 47, 9110–9112.

485

Cho, A. R.; Son, J. N.; Aravindan, V.; Kim, H.; Kang, K. S.; Yoon, W. S.; Kim, W. S.; Lee, Y. S. Carbon supported, Al doped-Li3V2(PO4)3 as a high rate cathode material for lithium-ion batteries. J. Mater. Chem. 2012, 22, 6556–6560.

486

Liu, H. D.; Yang, G.; Zhang, X. F.; Gao, P.; Wang, L.; Fang, J. H.; Pinto, J.; Jiang, X. F. Kinetics of conventional carbon coated-Li3V2(PO4)3 and nanocomposite Li3V2(PO4)3/graphene as cathode materials for lithium ion batteries. J. Mater. Chem. 2012, 22, 11039–11047.

487

Sun, C.; Rajasekhara, S.; Dong, Y.; Goodenough, J. B. Hydrothermal synthesis and electrochemical properties of Li3V2(PO4)3/C-based composites for lithium-ion batteries. ACS Appl. Mater. Interfaces 2011, 3, 3772–3776.

488

Xun, S. D.; Chong, J.; Song, X. Y.; Liu, G.; Battaglia, V. S. Li4P2O7 modified high performance Li3V2(PO4)3 cathode material. J. Mater. Chem. 2012, 22, 15775–15781.

489

Zhang, L. -L.; Liang, G.; Peng, G.; Zou, F.; Huang, Y. -H.; Croft, M. C.; Ignatov, A. Significantly improved electrochemical performance in Li3V2(PO4)3/C promoted by SiO2 coating for lithium-ion batteries. J. Phys. Chem. C 2012, 116, 12401–12408.

490

Saravanan, K.; Lee, H. S.; Kuezma, M.; Vittal, J. J.; Balaya, P. Hollow α-LiVOPO4 sphere cathodes for high energy Li-ion battery application. J. Mater. Chem. 2011, 21, 10042–10050.

491

Lii, K. H.; Li, C. H.; Cheng, C. Y.; Wang, S. L. Hydrothermal synthesis, structure, and magnetic properties of a new polymorph of lithium vanadyl(Ⅳ) orthophosphate: β-LiVOPO4. J. Solid State Chem. 1991, 95, 352–359.

492

Islam, M. S.; Dominko, R.; Masquelier, C.; Sirisopanaporn, C.; Armstrong, A. R.; Bruce, P. G. Silicate cathodes for lithium batteries: Alternatives to phosphates? J. Mater. Chem. 2011, 21, 9811–9818.

493

Dominko, R.; Bele, M.; Kokalj, A.; Gaberscek, M.; Jamnik, J. Li2MnSiO4 as a potential Li-battery cathode material. J. Power Sources 2007, 174, 457–461.

494

Nishimura, S.; Hayase, S.; Kanno, R.; Yashima, M.; Nakayama, N.; Yamada, A. Structure of Li2FeSiO4. J. Am. Chem. Soc. 2008, 130, 13212–13213.

495

Belharouak, I.; Abouimrane, A.; Amine, K. Structural and electrochemical characterization of Li2MnSiO4 cathode material. J. Phys. Chem. C 2009, 113, 20733–20737.

496

Boulineau, A.; Sirisopanaporn, C.; Dominko, R.; Armstrong, A. R.; Bruce, P. G.; Masquelier, C. Polymorphism and structural defects in Li2MnSiO4. Dalton Trans. 2010, 39, 6310–6316.

497

Kuganathan, N.; Islam, M. S. Li2MnSiO4 Lithium battery material: Atomic-scale study of defects, lithium mobility, and trivalent dopants. Chem. Mater. 2009, 21, 5196–5202.

498

Eames, C.; Armstrong, A. R.; Bruce, P. G.; Islam, M. S. Insights into changes in voltage and structure of Li2FeSiO4 polymorphs for lithium-ion batteries. Chem. Mater. 2012, 24, 2155–2161.

499

Sirisopanaporn, C.; Masquelier, C.; Bruce, P. G.; Armstrong, A. R.; Dominko, R. Dependence of Li2FeSiO4 electrochemistry on structure. J. Am. Chem. Soc. 2011, 133, 1263–1265.

500

Armstrong, A. R.; Kuganathan, N.; Islam, M. S.; Bruce, P. G. Structure and lithium transport pathways in Li2FeSiO4 cathodes for lithium batteries. J. Am. Chem. Soc. 2011, 133, 13031–13035.

501

Ensling, D.; Stjerndahl, M.; Nytén, A.; Gustafsson, T.; Thomas, J. O. A comparative XPS surface study of Li2FeSiO4/C cycled with LiTFSI-and LiPF6-based electrolytes. J. Mater. Chem. 2009, 19, 82–88.

502

Lv, D. P.; Wen, W.; Huang, X. K.; Bai, J. Y.; Mi, J. X.; Wu, S. Q.; Yang, Y. A novel Li2FeSiO4/C composite: Synthesis, characterization and high storage capacity. J. Mater. Chem. 2011, 21, 9506–9512.

503

Zuo, P. J.; Wang, T.; Cheng, G. Y.; Cheng, X. Q.; Du, C. Y.; Yin, G. P. Effects of carbon on the structure and electrochemical performance of Li2FeSiO4 cathode materials for lithium-ion batteries. RSC Adv. 2012, 2, 6994–6998.

504

Li, L. M.; Guo, H. J.; Li, X. H.; Wang, Z. X.; Peng, W. J.; Xiang, K. X.; Cao, X. Effects of roasting temperature and modification on properties of Li2FeSiO4/C cathode. J. Power Sources 2009, 189, 45–50.

505

Muraliganth, T.; Stroukoff, K. R.; Manthiram, A. Microwave-solvothermal synthesis of nanostructured Li2MSiO4/C (M = Mn and Fe) cathodes for lithium-ion batteries. Chem. Mater. 2010, 22, 5754–5761.

506

Huang, X. B.; Chen, H. H.; Zhou, S. B.; Chen, Y. D.; Yang, J. F.; Ren, Y. R.; Wang, H. Y.; Qu, M. Z.; Pan, Z. L.; Yu, Z. L. Synthesis and characterization of nano-Li1.95FeSiO4/C composite as cathode material for lithium-ion batteries. Electrochim. Acta 2012, 60, 239–243.

507

Yan, Z. P.; Cai, S.; Zhou, X.; Zhao, Y. M.; Miao, L. J. Sol–gel synthesis of nanostructured Li2FeSiO4/C as cathode material for lithium ion battery. J. Electrochem. Soc. 2012, 159, A894–A898.

508

Kam, K. C.; Gustafsson, T.; Thomas, J. O. Synthesis and electrochemical properties of nanostructured Li2FeSiO4/C cathode material for Li-ion batteries. Solid State Ionics 2011, 192, 356–359.

509

Zhang, S.; Deng, C.; Yang, S. Y. Preparation of nano-Li2FeSiO4 as cathode material for lithium-ion batteries. Electrochem. Solid-State Lett. 2009, 12, A136–A139.

510

Deng, C.; Zhang, S.; Fu, B. L.; Yang, S. Y.; Ma, L. Characterization of Li2MnSiO4 and Li2FeSiO4 cathode materials synthesized via a citric acid assisted sol–gel method. Mater. Chem. Phys. 2010, 120, 14–17.

511

Gong, Z. L.; Li, Y. X.; He, G. N.; Li, J.; Yang, Y. Nanostructured Li2FeSiO4 electrode material synthesized through hydrothermal-assisted sol–gel process. Electrochem. Solid-State Lett. 2008, 11, A60–A63.

512

Rangappa, D.; Murukanahally, K. D.; Tomai, T.; Unemoto, A.; Honma, I. Ultrathin nanosheets of Li2MSiO4 (M = Fe, Mn) as high-capacity Li-ion battery electrode. Nano Lett. 2012, 12, 1146–1151.

513

McDowell, M. T.; Lee, S. W.; Harris, J. T.; Korgel, B. A.; Wang, C. M.; Nix, W. D.; Cui, Y. In situ TEM of two-phase lithiation of amorphous silicon nanospheres. Nano Lett. 2013, 13, 758–764.

514

Liu, N.; Wu, H.; McDowell, M. T.; Yao, Y.; Wang, C. M.; Cui, Y. A yolk–shell design for stabilized and scalable Li-ion battery alloy anodes. Nano Lett. 2012, 12, 3315–3321.

515

Wang, F.; Yu, H. -C.; Chen, M. -H.; Wu, L. J.; Pereira, N.; Thornton, K.; van der Ven, A.; Zhu, Y. M.; Amatucci, G. G.; Graetz, J. Tracking lithium transport and electrochemical reactions in nanoparticles. Nat. Commun. 2012, 3, 1201.

516

Ceder, G.; Hautier, G.; Jain, A.; Ong, S. P. Recharging lithium battery research with first-principles methods. MRS Bull. 2012, 37, 185–191.

517

Roberts, M.; Johns, P.; Owen, J.; Brandell, D.; Edstrom, K.; El Enany, G.; Guery, C.; Golodnitsky, D.; Lacey, M.; Lecoeur, C.; et al. 3D lithium ion batteries—from fundamentals to fabrication. J. Mater. Chem. 2011, 21, 9876–9890.

518

Ma, D.; Cao, Z.; Wang, H.; Huang, X.; Wang, L.; Zhang, X. Three-dimensionally ordered macroporous FeF3 and its in situ homogenous polymerization coating for high energy and power density lithium ion batteries. Energy Environ. Sci. 2012, 5, 8538–8542.

519

Kang, D. -Y.; Kim, S. -O.; Chae, Y. J.; Lee, J. K.; Moon, J. H. Particulate inverse opal carbon electrodes for lithium-ion batteries. Langmuir 2013, 29, 1192–1198.

520

Cheah, S. K.; Perre, E.; Rooth, M.; Fondell, M.; Hårsta, A.; Nyholm, L.; Boman, M.; Gustafsson, T.; Lu, J.; Simon, P.; Edström, K. Self-supported three-dimensional nanoelectrodes for microbattery applications. Nano Lett. 2009, 9, 3230–3233.

521

Zhang, H.; Yu, X.; Braun, P. V. Three-dimensional bicontinuous ultrafast-charge and -discharge bulk battery electrodes. Nat. Nanotechnol. 2011, 6, 277–281.

522

Shao, Y.; Park, S.; Xiao, J.; Zhang, J. -G.; Wang, Y.; Liu, J. Electrocatalysts for nonaqueous lithium–air batteries: Status, challenges, and perspective. ACS Catal. 2012, 2, 844–857.

523

Lu, Y.; Gallant, B.; Kwabi, D.; Harding, J.; Mitchell, R.; Whittingham, M. S.; Shao-Horn, Y. Lithium–oxygen batteries: Bridging mechanistic understanding and battery performance. Energy Environ. Sci. 2013, 6, 750–768.

524

Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J. -M. Li–O2 and Li–S batteries with high energy storage. Nat. Mater. 2012, 11, 19–29.

525

Girishkumar, G.; McCloskey, B.; Luntz, A. C.; Swanson, S.; Wilcke, W. Lithium−air battery: Promise and challenges. J. Phys. Chem. Lett. 2010, 1, 2193–2203.

526

Shao, Y.; Ding, F.; Xiao, J.; Zhang, J.; Xu, W.; Park, S.; Zhang, J. -G.; Wang, Y.; Liu, J. Making Li–air batteries rechargeable: Material challenges. Adv. Funct. Mater. 2013, 23, 987–1004.

527

Capsoni, D.; Bini, M.; Ferrari, S.; Quartarone, E.; Mustarelli, P. Recent advances in the development of Li–air batteries. J. Power Sources 2012, 220, 253–263.

Publication history
Copyright
Acknowledgements

Publication history

Received: 18 July 2013
Revised: 17 September 2013
Accepted: 01 October 2013
Published: 04 December 2013
Issue date: January 2014

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2013

Acknowledgements

Acknowledgements

This work was supported by Science Foundation Ireland (SFI) Grant No. 07/SRC/I1172.

Return