Journal Home > Volume 7 , Issue 1

Silicon has been recognized as the most promising anode material for high capacity lithium ion batteries. However, large volume variations during charge and discharge result in pulverization of Si electrodes and fast capacity loss on cycling. This drawback of Si electrodes can be overcome by combination with well-organized graphene foam. In this work, hierarchical three-dimensional carbon-coated mesoporous Si nanospheres@graphene foam (C@Si@GF) nanoarchitectures were successfully synthesized by a thermal bubble ejection assisted chemical-vapor-deposition and magnesiothermic reduction method. The morphology and structure of the as-prepared nanocomposites were characterized by field emission scanning electron microscopy, transmission electron microscopy and Raman spectroscopy. When employed as anode materials in lithium ion batteries, C@Si@GF nanocomposites exhibited superior electrochemical performance including a high specific capacity of 1, 200 mAh/g at the current density of 1 A/g, excellent high rate capabilities and an outstanding cyclability. Post-mortem analyses identified that the morphology of 3D C@Si@GF electrodes after 200 cycles was well maintained. The synergistic effects arising from the combination of mesoporous Si nanospheres and graphene foam nanoarchitectures may address the intractable pulverization problem of Si electrode.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Hierarchical 3D mesoporous silicon@graphene nanoarchitectures for lithium ion batteries with superior performance

Show Author's information Shuangqiang Chen1Peite Bao2Xiaodan Huang1Bing Sun1Guoxiu Wang1( )
Centre for Clean Energy Technology School of Chemistry and Forensic Science University of TechnologySydney NSW 2007 Australia
School of Physics The University of Sydney NSW 2006 Australia

Abstract

Silicon has been recognized as the most promising anode material for high capacity lithium ion batteries. However, large volume variations during charge and discharge result in pulverization of Si electrodes and fast capacity loss on cycling. This drawback of Si electrodes can be overcome by combination with well-organized graphene foam. In this work, hierarchical three-dimensional carbon-coated mesoporous Si nanospheres@graphene foam (C@Si@GF) nanoarchitectures were successfully synthesized by a thermal bubble ejection assisted chemical-vapor-deposition and magnesiothermic reduction method. The morphology and structure of the as-prepared nanocomposites were characterized by field emission scanning electron microscopy, transmission electron microscopy and Raman spectroscopy. When employed as anode materials in lithium ion batteries, C@Si@GF nanocomposites exhibited superior electrochemical performance including a high specific capacity of 1, 200 mAh/g at the current density of 1 A/g, excellent high rate capabilities and an outstanding cyclability. Post-mortem analyses identified that the morphology of 3D C@Si@GF electrodes after 200 cycles was well maintained. The synergistic effects arising from the combination of mesoporous Si nanospheres and graphene foam nanoarchitectures may address the intractable pulverization problem of Si electrode.

Keywords: chemical vapor deposition, lithium ion battery, graphene foam, silicon anode

References(56)

1

Tang, W.; Hou, Y.; Wang, F.; Liu, L.; Wu, Y.; Zhu, K. LiMn2O4 nanotube as cathode material of second-level charge capability for aqueous rechargeable batteries. Nano Lett. 2013, 13, 2036–2040.

2

Wu, H.; Chan, G.; Choi, J. W.; Ryu, I.; Yao, Y.; McDowell, M. T.; Lee, S. W.; Jackson, A.; Yang, Y.; Hu, L. , et al. Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nat. Nanotechnol. 2012, 7, 310–315.

3

Qu, Q.; Fu, L.; Zhan, X.; Samuelis, D.; Maier, J.; Li, L.; Tian, S.; Li, Z.; Wu, Y. Porous LiMn2O4 as cathode material with high power and excellent cycling for aqueous rechargeable lithium batteries. Energy Environ. Sci. 2011, 4, 3985–3990.

4

Yao, Y.; McDowell, M. T.; Ryu, I.; Wu, H.; Liu, N.; Hu, L.; Nix, W. D.; Cui, Y. Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life. Nano Lett. 2011, 11, 2949–2954.

5

Luo, J.; Zhao, X.; Wu, J.; Jang, H. D.; Kung, H. H.; Huang, J. Crumpled graphene-encapsulated Si nanoparticles for lithium ion battery anodes. J. Phys. Chem. Lett. 2012, 3, 1824–1829.

6

Wu, H.; Yu, G.; Pan, L.; Liu, N.; McDowell, M. T.; Bao, Z.; Cui, Y. Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles. Nat. Commun. 2013, 4. 1493.

7

Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D. Challenges in the development of advanced Li-ion batteries: A review. Energy Environ. Sci. 2011, 4, 3243–3262.

8

Wu, Z. S.; Zhou, G.; Yin, L. C.; Ren, W.; Li, F.; Cheng, H. M. Graphene/metal oxide composite electrode materials for energy storage. Nano Energy 2012, 1, 107–131.

9

Wang, G.; Wang, B.; Wang, X.; Park, J.; Dou, S.; Ahn, H.; Kim, K. Sn/graphene nanocomposite with 3D architecture for enhanced reversible lithium storage in lithium ion batteries. J. Mater. Chem. 2009, 19, 8378–8384.

10

Chen, S.; Bao, P.; Xiao, L.; Wang, G. Large-scale and low cost synthesis of graphene as high capacity anode materials for lithium-ion batteries. Carbon 2013, 64, 158–169.

11

Wu, H.; Cui, Y. Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today 2012, 7, 414–429.

12

Kim, H.; Han, B.; Choo, J.; Cho, J. Three-dimensional porous silicon particles for use in high-performance lithium secondary batteries. Angew. Chem. Int. Ed. 2008, 47, 10151– 10154.

13

Ge, M.; Rong, J.; Fang, X.; Zhang, A.; Lu, Y.; Zhou, C. Scalable preparation of porous silicon nanoparticles and their application for lithium-ion battery anodes. Nano Res. 2013, 6, 174–181.

14

Liu, N.; Yao, Y.; Cha, J.; McDowell, M.; Han, Y.; Cui, Y. Functionalization of silicon nanowire surfaces with metal-organic frameworks. Nano Res. 2012, 5, 109–116.

15

Zhu, X.; Chen, H.; Wang, Y.; Xia, L.; Tan, Q.; Li, H.; Zhong, Z.; Su, F.; Zhao, X. S. Growth of silicon/carbon microrods on graphite microspheres as improved anodes for lithium-ion batteries. J. Mater. Chem. A 2013, 1, 4483–4489.

16

Kong, J.; Yee, W. A.; Wei, Y.; Yang, L.; Ang, J. M.; Phua, S. L.; Wong, S. Y.; Zhou, R.; Dong, Y.; Li, X. , et al. Silicon nanoparticles encapsulated in hollow graphitized carbon nanofibers for lithium ion battery anodes. Nanoscale 2013, 5, 2967–2973.

17

Liu, N.; Wu, H.; McDowell, M. T.; Yao, Y.; Wang, C.; Cui, Y. A yolk-shell design for stabilized and scalable Li-ion battery alloy anodes. Nano Lett. 2012, 12, 3315–3321.

18

Kim, H.; Seo, M.; Park, M. H.; Cho, J. A critical size of silicon nano-anodes for lithium rechargeable batteries. Angew. Chem. Int. Ed. 2010, 49, 2146–2149.

19

Zhou, X.; Cao, A. M.; Wan, L. J.; Guo, Y. G. Spin-coated silicon nanoparticle/graphene electrode as a binder-free anode for high-performance lithium-ion batteries. Nano Res. 2012, 5, 845–853.

20

Kovalenko, I.; Zdyrko, B.; Magasinski, A.; Hertzberg, B.; Milicev, Z.; Burtovyy, R.; Luzinov, I.; Yushin, G. A major constituent of brown algae for use in high-capacity Li-ion batteries. Science 2011, 334, 75–79.

21

Koo, B.; Kim, H.; Cho, Y.; Lee, K. T.; Choi, N. S.; Cho, J. A highly cross-linked polymeric binder for high-performance silicon negative electrodes in lithium ion batteries. Angew. Chem. Int. Ed. 2012, 51, 8762–8767.

22

Magasinski, A.; Zdyrko, B.; Kovalenko, I.; Hertzberg, B.; Burtovyy, R.; Huebner, C. F.; Fuller, T. F.; Luzinov, I.; Yushin, G. Toward efficient binders for Li-ion battery Si-based anodes: Polyacrylic acid. ACS Appl. Mater. Interfaces 2010, 2, 3004–3010.

23

Guy, D.; Lestriez, B.; Guyomard, D. New composite electrode architecture and improved battery performance from the smart use of polymers and their properties. Adv. Mater. 2004, 16, 553–557.

24

Guo, J.; Wang, C. A polymer scaffold binder structure for high capacity silicon anode of lithium-ion battery. Chem. Commun. 2010, 46, 1428–1430.

25

Kim, J. W.; Ryu, J. H.; Lee, K. T.; Oh, S. M. Improvement of silicon powder negative electrodes by copper electroless deposition for lithium secondary batteries. J. Power Sources 2005, 147, 227–233.

26

Chen, D.; Mei, X.; Ji, G.; Lu, M.; Xie, J.; Lu, J.; Lee, J. Y. Reversible lithium-ion storage in silver-treated nanoscale hollow porous silicon particles. Angew. Chem. Int. Ed. 2012, 51, 2409–2413.

27

Yu, Y.; Gu, L.; Zhu, C.; Tsukimoto, S.; van Aken, P. A.; Maier, J. Reversible storage of lithium in silver-coated three-dimensional macroporous silicon. Adv. Mater. 2010, 22, 2247–2250.

28

Yang, Z.; Guo, J.; Xu, S.; Yu, Y.; Abruña, H. D.; Archer, L. A. Interdispersed silicon–carbon nanocomposites and their application as anode materials for lithium-ion batteries. Electrochem. Commun. 2013, 28, 40–43.

29

Cui, L. F.; Hu, L.; Choi, J. W.; Cui, Y. Light-weight free-standing carbon nanotube-silicon films for anodes of lithium ion batteries. ACS Nano 2010, 4, 3671–3678.

30

Chen, P. C.; Xu, J.; Chen, H.; Zhou, C. Hybrid silicon-carbon nanostructured composites as superior anodes for lithium ion batteries. Nano Res. 2011, 4, 290–296.

31

Deng, J.; Ji, H.; Yan, C.; Zhang, J.; Si, W.; Baunack, S.; Oswald, S.; Mei, Y.; Schmidt, O. G. Naturally rolled-up C/Si/C trilayer nanomembranes as stable anodes for lithium-ion batteries with remarkable cycling performance. Angew. Chem. Int. Ed. 2013, 52, 2326–2330.

32

Rong, J.; Fang, X.; Ge, M.; Chen, H.; Xu, J.; Zhou, C. Coaxial Si/anodic titanium oxide/Si nanotube arrays for lithium-ion battery anodes. Nano Res. 2013, 6, 182–190.

33

Magasinski, A.; Dixon, P.; Hertzberg, B.; Kvit, A.; Ayala, J.; Yushin, G. High-performance lithium-ion anodes using a hierarchical bottom-up approach. Nat. Mater. 2010, 9, 353–358.

34

Park, M. S.; Wang, G. X.; Liu, H. K.; Dou, S. X. Electrochemical properties of Si thin film prepared by pulsed laser deposition for lithium ion micro-batteries. Electrochim. Acta 2006, 51, 5246–5249.

35

Xin, X.; Zhou, X.; Wang, F.; Yao, X.; Xu, X.; Zhu, Y.; Liu, Z. A. 3D porous architecture of Si/graphene nanocomposite as high-performance anode materials for Li-ion batteries. J. Mater. Chem. 2012, 22, 7724–7730.

36

Lee, J. K.; Smith, K. B.; Hayner, C. M.; Kung, H. H. Silicon nanoparticles-graphene paper composites for Li ion battery anodes. Chem. Commun. 2010, 46, 2025–2027.

37

Hu, Y. S.; Demir-Cakan, R.; Titirici, M. M.; Müller, J. O.; Schlögl, R.; Antonietti, M.; Maier, J. Superior storage performance of a Si@SiOx/C nanocomposite as anode material for lithium-ion batteries. Angew. Chem. Int. Ed. 2008, 47, 1645–1649.

38

Huang, X.; Qian, K.; Yang, J.; Zhang, J.; Li, L.; Yu, C.; Zhao, D. Functional nanoporous graphene foams with controlled pore sizes. Adv. Mater. 2012, 24, 4419–4423.

39

Chen, S.; Chen, P.; Wu, M.; Pan, D.; Wang, Y. Graphene supported Sn–Sb@carbon core–shell particles as a superior anode for lithium ion batteries. Electrochem. Commun. 2010, 12, 1302–1306.

40

Ranjbartoreh, A. R.; Wang, B.; Shen, X.; Wang, G. Advanced mechanical properties of graphene paper. J. Appl. Phy. 2011, 109, 014306.

41

Hu, H.; Zhao, Z.; Wan, W.; Gogotsi, Y.; Qiu, J. Ultralight and highly compressible graphene aerogels. Adv. Mater. 2013, 25, 2219–2223.

42

Chen, Z.; Xu, C.; Ma, C.; Ren, W.; Cheng, H. M. Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding. Adv. Mater. 2013, 25, 1296–1300.

43

Qiu, L.; Liu, J. Z.; Chang, S. L. Y.; Wu, Y.; Li, D. Biomimetic superelastic graphene-based cellular monoliths. Nat. Commun. 2012, 3, 1241.

44

Chen, Z.; Ren, W.; Gao, L.; Liu, B.; Pei, S.; Cheng, H. M. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat. Mater. 2011, 10, 424–428.

45

Zhao, Y.; Hu, C.; Hu, Y.; Cheng, H.; Shi, G.; Qu, L. A versatile, ultralight, nitrogen-doped graphene framework. Angew. Chem. Int. Ed. 2012, 51, 11371–11375.

46

Li, D.; Muller, M. B.; Gilje, S.; Kaner, R. B.; Wallace, G. G. Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 2008, 3, 101–105.

47

Vickery, J. L.; Patil, A. J.; Mann, S. Fabrication of graphene–polymer nanocomposites with higher-order three-dimensional architectures. Adv. Mater. 2009, 21, 2180–2184.

48

Xu, Y.; Sheng, K.; Li, C.; Shi, G. Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano 2010, 4, 4324–4330.

49

Kim, K. H.; Oh, Y.; Islam, M. F. Graphene coating makes carbon nanotube aerogels superelastic and resistant to fatigue. Nat. Nanotechnol. 2012, 7, 562–566.

50

Liang, H. W.; Guan, Q. F.; Chen, L. F.; Zhu, Z.; Zhang, W. J.; Yu, S. H. Macroscopic-scale template synthesis of robust carbonaceous nanofiber hydrogels and aerogels and their applications. Angew. Chem. Int. Ed. 2012, 51, 5101–5105.

51

Mecklenburg, M.; Schuchardt, A.; Mishra, Y. K.; Kaps, S.; Adelung, R.; Lotnyk, A.; Kienle, L.; Schulte, K. Aerographite: Ultra lightweight, flexible nanowall, carbon microtube material with outstanding mechanical performance. Adv. Mater. 2012, 24, 3437–3437.

52

Zou, Y.; Wang, Y. Sn@CNT nanostructures rooted in graphene with high and fast Li-storage capacities. ACS Nano 2011, 5, 8108–8114.

53

Chen, S. Q.; Wang, Y. Microwave-assisted synthesis of a Co3O4–graphene sheet-on-sheet nanocomposite as a superior anode material for Li-ion batteries. J. Mater. Chem. 2010, 20, 9735–9739.

54

Chen, S.; Bao, P.; Wang, G. Synthesis of Fe2O3–CNT– graphene hybrid materials with an open three-dimensional nanostructure for high capacity lithium storage. Nano Energy 2013, 2, 425–434.

55

Bao, Z.; Weatherspoon, M. R.; Shian, S.; Cai, Y.; Graham, P. D.; Allan, S. M.; Ahmad, G.; Dickerson, M. B.; Church, B. C.; Kang, Z. , et al. Chemical reduction of three-dimensional silica micro-assemblies into microporous silicon replicas. Nature 2007, 446, 172–175.

56

Saint, J.; Morcrette, M.; Larcher, D.; Laffont, L.; Beattie, S.; Pérès, J. P.; Talaga, D.; Couzi, M.; Tarascon, J. M. Towards a fundamental understanding of the improved electrochemical performance of silicon–carbon composites. Adv. Funct. Mater. 2007, 17, 1765–1774.

File
nr-7-1-85_ESM.pdf (1.6 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 05 August 2013
Revised: 24 September 2013
Accepted: 30 September 2013
Published: 12 November 2013
Issue date: January 2014

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2013

Acknowledgements

Acknowledgements

This project is financially supported by the Australian Research Council (ARC) through the ARC Discovery project (No. DP1093855), ARC Future Fellowship project (No. FT110100800) and partially supported by the Chinese Scholarship Council (CSC, No. 2011689009).

Return